Official implementation of EfficientPose

Overview

EfficientPose

This is the official implementation of EfficientPose. We based our work on the Keras EfficientDet implementation xuannianz/EfficientDet which again builds up on the great Keras RetinaNet implementation fizyr/keras-retinanet, the official EfficientDet implementation google/automl and qubvel/efficientnet.

image1

Installation

  1. Clone this repository
  2. Create a new environment with conda create -n EfficientPose python==3.6
  3. Activate that environment with conda activate EfficientPose
  4. Install Tensorflow 1.15.0 with conda install tensorflow-gpu==1.15.0
  5. Go to the repo dir and install the other dependencys using pip install -r requirements.txt
  6. Compile cython modules with python setup.py build_ext --inplace

Dataset and pretrained weights

You can download the Linemod and Occlusion datasets and the pretrained weights from here. Just unzip the Linemod_and_Occlusion.zip file and you can train or evaluate using these datasets as described below.

The dataset is originally downloaded from j96w/DenseFusion as well as chensong1995/HybridPose and were preprocessed using the generate_masks.py script. The EfficientDet COCO pretrained weights are from xuannianz/EfficientDet.

Training

Linemod

To train a phi = 0 EfficientPose model on object 8 of Linemod (driller) using COCO pretrained weights:

python train.py --phi 0 --weights /path_to_weights/file.h5 linemod /path_to_dataset/Linemod_preprocessed/ --object-id 8

Occlusion

To train a phi = 0 EfficientPose model on Occlusion using COCO pretrained weights:

python train.py --phi 0 --weights /path_to_weights/file.h5 occlusion /path_to_dataset/Linemod_preprocessed/

See train.py for more arguments.

Evaluating

Linemod

To evaluate a trained phi = 0 EfficientPose model on object 8 of Linemod (driller) and (optionally) save the predicted images:

python evaluate.py --phi 0 --weights /path_to_weights/file.h5 --validation-image-save-path /where_to_save_predicted_images/ linemod /path_to_dataset/Linemod_preprocessed/ --object-id 8

Occlusion

To evaluate a trained phi = 0 EfficientPose model on Occlusion and (optionally) save the predicted images:

python evaluate.py --phi 0 --weights /path_to_weights/file.h5 --validation-image-save-path /where_to_save_predicted_images/ occlusion /path_to_dataset/Linemod_preprocessed/

If you don`t want to save the predicted images just skip the --validation-image-save-path argument.

Inferencing

We also provide two basic scripts demonstrating the exemplary use of a trained EfficientPose model for inferencing. With python inference.py you can run EfficientPose on all images in a directory. The needed parameters, e.g. the path to the images and the model can be modified in the inference.py script.

With python inference_webcam.py you can run EfficientPose live with your webcam. Please note that you have to replace the intrinsic camera parameters used in this script (Linemod) with your webcam parameters. Since the Linemod and Occlusion datasets are too small to expect a reasonable 6D pose estimation performance in the real world and a lot of people probably do not have the exact same objects used in Linemod (like me), you can try to display a Linemod image on your screen and film it with your webcam.

Benchmark

To measure the runtime of EfficientPose on your machine you can use python benchmark_runtime.py. The needed parameters, e.g. the path to the model can be modified in the benchmark_runtime.py script. Similarly, you can also measure the vanilla EfficientDet runtime on your machine with the benchmark_runtime_vanilla_effdet.py script.

Debugging Dataset and Generator

If you want to modify the generators or build a new custom dataset, it can be very helpful to display the dataset annotations loaded from your generator to make sure everything works as expected. With

python debug.py --phi 0 --annotations linemod /path_to_dataset/Linemod_preprocessed/ --object-id 8

you can display the loaded and augmented image as well as annotations prepared for a phi = 0 model from object 8 of the Linemod dataset. Please see debug.py for more arguments.

Citation

Please cite EfficientPose if you use it in your research

@misc{bukschat2020efficientpose,
      title={EfficientPose: An efficient, accurate and scalable end-to-end 6D multi object pose estimation approach}, 
      author={Yannick Bukschat and Marcus Vetter},
      year={2020},
      eprint={2011.04307},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

License

EfficientPose is licensed under the Creative Commons Attribution-NonCommercial 4.0 International license and is freely available for non-commercial use. Please see the LICENSE for further details. If you are interested in commercial use, please contact us under [email protected] or [email protected].

Learning to Prompt for Continual Learning

Learning to Prompt for Continual Learning (L2P) Official Jax Implementation L2P is a novel continual learning technique which learns to dynamically pr

Google Research 207 Jan 06, 2023
Main repository for the HackBio'2021 Virtual Internship Experience for #Team-Greider ❤️

Hello 🤟 #Team-Greider The team of 20 people for HackBio'2021 Virtual Bioinformatics Internship 💝 🖨️ 👨‍💻 HackBio: https://thehackbio.com 💬 Ask us

Siddhant Sharma 7 Oct 20, 2022
This is an official implementation for "SimMIM: A Simple Framework for Masked Image Modeling".

Project This repo has been populated by an initial template to help get you started. Please make sure to update the content to build a great experienc

Microsoft 674 Dec 26, 2022
Pytorch Implementation for (STANet+ and STANet)

Pytorch Implementation for (STANet+ and STANet) V2-Weakly Supervised Visual-Auditory Saliency Detection with Multigranularity Perception (arxiv), pdf:

GuotaoWang 14 Nov 29, 2022
ppo_pytorch_cpp - an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch

PPO Pytorch C++ This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment t

Martin Huber 59 Dec 09, 2022
PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices.

PyTorch-LIT PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices. With

Amin Rezaei 157 Dec 11, 2022
PyTorch and Tensorflow functional model definitions

functional-zoo Model definitions and pretrained weights for PyTorch and Tensorflow PyTorch, unlike lua torch, has autograd in it's core, so using modu

Sergey Zagoruyko 590 Dec 22, 2022
SIR model parameter estimation using a novel algorithm for differentiated uniformization.

TenSIR Parameter estimation on epidemic data under the SIR model using a novel algorithm for differentiated uniformization of Markov transition rate m

The Spang Lab 4 Nov 30, 2022
Official implementation of "OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Temporal Association" in PyTorch.

openpifpaf Continuously tested on Linux, MacOS and Windows: New 2021 paper: OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Te

VITA lab at EPFL 50 Dec 29, 2022
Probabilistic Cross-Modal Embedding (PCME) CVPR 2021

Probabilistic Cross-Modal Embedding (PCME) CVPR 2021 Official Pytorch implementation of PCME | Paper Sanghyuk Chun1 Seong Joon Oh1 Rafael Sampaio de R

NAVER AI 87 Dec 21, 2022
GLIP: Grounded Language-Image Pre-training

GLIP: Grounded Language-Image Pre-training Updates 12/06/2021: GLIP paper on arxiv https://arxiv.org/abs/2112.03857. Code and Model are under internal

Microsoft 862 Jan 01, 2023
Hashformers is a framework for hashtag segmentation with transformers.

Hashtag segmentation is the task of automatically inserting the missing spaces between the words in a hashtag. Hashformers applies Transformer models

Ruan Chaves 41 Nov 09, 2022
Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN)

Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN) This code implements the skeleton-based action segmentation MS-GCN model from Autom

Benjamin Filtjens 8 Nov 29, 2022
A repository built on the Flow software package to explore cyber-security attacks on intelligent transportation systems.

A repository built on the Flow software package to explore cyber-security attacks on intelligent transportation systems.

George Gunter 4 Nov 14, 2022
Tensorflow port of a full NetVLAD network

netvlad_tf The main intention of this repo is deployment of a full NetVLAD network, which was originally implemented in Matlab, in Python. We provide

Robotics and Perception Group 225 Nov 08, 2022
A multi-functional library for full-stack Deep Learning. Simplifies Model Building, API development, and Model Deployment.

chitra What is chitra? chitra (चित्र) is a multi-functional library for full-stack Deep Learning. It simplifies Model Building, API development, and M

Aniket Maurya 210 Dec 21, 2022
This is a package for LiDARTag, described in paper: LiDARTag: A Real-Time Fiducial Tag System for Point Clouds

LiDARTag Overview This is a package for LiDARTag, described in paper: LiDARTag: A Real-Time Fiducial Tag System for Point Clouds (PDF)(arXiv). This wo

University of Michigan Dynamic Legged Locomotion Robotics Lab 159 Dec 21, 2022
Optical machine for senses sensing using speckle and deep learning

# Senses-speckle [Remote Photonic Detection of Human Senses Using Secondary Speckle Patterns](https://doi.org/10.21203/rs.3.rs-724587/v1) paper Python

Zeev Kalyuzhner 0 Sep 26, 2021
Machine Learning automation and tracking

The Open-Source MLOps Orchestration Framework MLRun is an open-source MLOps framework that offers an integrative approach to managing your machine-lea

873 Jan 04, 2023
Blender Python - Node-based multi-line text and image flowchart

MindMapper v0.8 Node-based text and image flowchart for Blender Mindmap with shortcuts visible: Mindmap with shortcuts hidden: Notes This was requeste

SpectralVectors 58 Oct 08, 2022