Official implementation of EfficientPose

Overview

EfficientPose

This is the official implementation of EfficientPose. We based our work on the Keras EfficientDet implementation xuannianz/EfficientDet which again builds up on the great Keras RetinaNet implementation fizyr/keras-retinanet, the official EfficientDet implementation google/automl and qubvel/efficientnet.

image1

Installation

  1. Clone this repository
  2. Create a new environment with conda create -n EfficientPose python==3.6
  3. Activate that environment with conda activate EfficientPose
  4. Install Tensorflow 1.15.0 with conda install tensorflow-gpu==1.15.0
  5. Go to the repo dir and install the other dependencys using pip install -r requirements.txt
  6. Compile cython modules with python setup.py build_ext --inplace

Dataset and pretrained weights

You can download the Linemod and Occlusion datasets and the pretrained weights from here. Just unzip the Linemod_and_Occlusion.zip file and you can train or evaluate using these datasets as described below.

The dataset is originally downloaded from j96w/DenseFusion as well as chensong1995/HybridPose and were preprocessed using the generate_masks.py script. The EfficientDet COCO pretrained weights are from xuannianz/EfficientDet.

Training

Linemod

To train a phi = 0 EfficientPose model on object 8 of Linemod (driller) using COCO pretrained weights:

python train.py --phi 0 --weights /path_to_weights/file.h5 linemod /path_to_dataset/Linemod_preprocessed/ --object-id 8

Occlusion

To train a phi = 0 EfficientPose model on Occlusion using COCO pretrained weights:

python train.py --phi 0 --weights /path_to_weights/file.h5 occlusion /path_to_dataset/Linemod_preprocessed/

See train.py for more arguments.

Evaluating

Linemod

To evaluate a trained phi = 0 EfficientPose model on object 8 of Linemod (driller) and (optionally) save the predicted images:

python evaluate.py --phi 0 --weights /path_to_weights/file.h5 --validation-image-save-path /where_to_save_predicted_images/ linemod /path_to_dataset/Linemod_preprocessed/ --object-id 8

Occlusion

To evaluate a trained phi = 0 EfficientPose model on Occlusion and (optionally) save the predicted images:

python evaluate.py --phi 0 --weights /path_to_weights/file.h5 --validation-image-save-path /where_to_save_predicted_images/ occlusion /path_to_dataset/Linemod_preprocessed/

If you don`t want to save the predicted images just skip the --validation-image-save-path argument.

Inferencing

We also provide two basic scripts demonstrating the exemplary use of a trained EfficientPose model for inferencing. With python inference.py you can run EfficientPose on all images in a directory. The needed parameters, e.g. the path to the images and the model can be modified in the inference.py script.

With python inference_webcam.py you can run EfficientPose live with your webcam. Please note that you have to replace the intrinsic camera parameters used in this script (Linemod) with your webcam parameters. Since the Linemod and Occlusion datasets are too small to expect a reasonable 6D pose estimation performance in the real world and a lot of people probably do not have the exact same objects used in Linemod (like me), you can try to display a Linemod image on your screen and film it with your webcam.

Benchmark

To measure the runtime of EfficientPose on your machine you can use python benchmark_runtime.py. The needed parameters, e.g. the path to the model can be modified in the benchmark_runtime.py script. Similarly, you can also measure the vanilla EfficientDet runtime on your machine with the benchmark_runtime_vanilla_effdet.py script.

Debugging Dataset and Generator

If you want to modify the generators or build a new custom dataset, it can be very helpful to display the dataset annotations loaded from your generator to make sure everything works as expected. With

python debug.py --phi 0 --annotations linemod /path_to_dataset/Linemod_preprocessed/ --object-id 8

you can display the loaded and augmented image as well as annotations prepared for a phi = 0 model from object 8 of the Linemod dataset. Please see debug.py for more arguments.

Citation

Please cite EfficientPose if you use it in your research

@misc{bukschat2020efficientpose,
      title={EfficientPose: An efficient, accurate and scalable end-to-end 6D multi object pose estimation approach}, 
      author={Yannick Bukschat and Marcus Vetter},
      year={2020},
      eprint={2011.04307},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

License

EfficientPose is licensed under the Creative Commons Attribution-NonCommercial 4.0 International license and is freely available for non-commercial use. Please see the LICENSE for further details. If you are interested in commercial use, please contact us under [email protected] or [email protected].

Load What You Need: Smaller Multilingual Transformers for Pytorch and TensorFlow 2.0.

Smaller Multilingual Transformers This repository shares smaller versions of multilingual transformers that keep the same representations offered by t

Geotrend 79 Dec 28, 2022
A study project using the AA-RMVSNet to reconstruct buildings from multiple images

3d-building-reconstruction This is part of a study project using the AA-RMVSNet to reconstruct buildings from multiple images. Introduction It is exci

17 Oct 17, 2022
Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included.

pixel_character_generator Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included. Dataset TinyHero D

Agnieszka Mikołajczyk 88 Nov 17, 2022
GMFlow: Learning Optical Flow via Global Matching

GMFlow GMFlow: Learning Optical Flow via Global Matching Authors: Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, Dacheng Tao We streamline the

Haofei Xu 298 Jan 04, 2023
Official code of paper "PGT: A Progressive Method for Training Models on Long Videos" on CVPR2021

PGT Code for paper PGT: A Progressive Method for Training Models on Long Videos. Install Run pip install -r requirements.txt. Run python setup.py buil

Bo Pang 27 Mar 30, 2022
Code of the paper "Multi-Task Meta-Learning Modification with Stochastic Approximation".

Multi-Task Meta-Learning Modification with Stochastic Approximation This repository contains the code for the paper "Multi-Task Meta-Learning Modifica

Andrew 3 Jan 05, 2022
Stacked Generative Adversarial Networks

Stacked Generative Adversarial Networks This repository contains code for the paper "Stacked Generative Adversarial Networks", CVPR 2017. Part of the

Xun Huang 241 May 07, 2022
Code accompanying the paper "ProxyFL: Decentralized Federated Learning through Proxy Model Sharing"

ProxyFL Code accompanying the paper "ProxyFL: Decentralized Federated Learning through Proxy Model Sharing" Authors: Shivam Kalra*, Junfeng Wen*, Jess

Layer6 Labs 14 Dec 06, 2022
Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

104 Dec 15, 2022
Baseline of DCASE 2020 task 4

Couple Learning for SED This repository provides the data and source code for sound event detection (SED) task. The improvement of the Couple Learning

21 Oct 18, 2022
Neural HMMs are all you need (for high-quality attention-free TTS)

Neural HMMs are all you need (for high-quality attention-free TTS) Shivam Mehta, Éva Székely, Jonas Beskow, and Gustav Eje Henter This is the official

Shivam Mehta 0 Oct 28, 2022
Deploy optimized transformer based models on Nvidia Triton server

Deploy optimized transformer based models on Nvidia Triton server

Lefebvre Sarrut Services 1.2k Jan 05, 2023
GenshinMapAutoMarkTools - Tools To add/delete/refresh resources mark in Genshin Impact Map

使用说明 适配 windows7以上 64位 原神1920x1080窗口(其他分辨率后续适配) 待更新渊下宫 English version is to be

Zero_Circle 209 Dec 28, 2022
Datasets for new state-of-the-art challenge in disentanglement learning

High resolution disentanglement datasets This repository contains the Falcor3D and Isaac3D datasets, which present a state-of-the-art challenge for co

NVIDIA Research Projects 37 May 26, 2022
The original weights of some Caffe models, ported to PyTorch.

pytorch-caffe-models This repo contains the original weights of some Caffe models, ported to PyTorch. Currently there are: GoogLeNet (Going Deeper wit

Katherine Crowson 9 Nov 04, 2022
U-2-Net: U Square Net - Modified for paired image training of style transfer

U2-Net: U Square Net Modified for paired image training of style transfer This is an unofficial repo making use of the code which was made available b

Doron Adler 43 Oct 03, 2022
This git repo contains the implementation of my ML project on Heart Disease Prediction

Introduction This git repo contains the implementation of my ML project on Heart Disease Prediction. This is a real-world machine learning model/proje

Aryan Dutta 1 Feb 02, 2022
TransMorph: Transformer for Medical Image Registration

TransMorph: Transformer for Medical Image Registration keywords: Vision Transformer, Swin Transformer, convolutional neural networks, image registrati

Junyu Chen 180 Jan 07, 2023
This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationships.

Auto-Lambda This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationship

Shikun Liu 76 Dec 20, 2022
Simple PyTorch hierarchical models.

A python package adding basic hierarchal networks in pytorch for classification tasks. It implements a simple hierarchal network structure based on feed-backward outputs.

Rajiv Sarvepalli 5 Mar 06, 2022