A Python library for Deep Probabilistic Modeling

Overview

MIT license PyPI version

Logo

Abstract

DeeProb-kit is a Python library that implements deep probabilistic models such as various kinds of Sum-Product Networks, Normalizing Flows and their possible combinations for probabilistic inference. Some models are implemented using PyTorch for fast training and inference on GPUs.

Features

  • Inference algorithms for SPNs. 1 4
  • Learning algorithms for SPNs structure. 1 2 3 4
  • Chow-Liu Trees (CLT) as SPN leaves. 11 12
  • Batch Expectation-Maximization (EM) for SPNs with arbitrarily leaves. 13 14
  • Structural marginalization and pruning algorithms for SPNs.
  • High-order moments computation for SPNs.
  • JSON I/O operations for SPNs and CLTs. 4
  • Plotting operations based on NetworkX for SPNs and CLTs. 4
  • Randomized And Tensorized SPNs (RAT-SPNs) using PyTorch. 5
  • Masked Autoregressive Flows (MAFs) using PyTorch. 6
  • Real Non-Volume-Preserving (RealNVP) and Non-linear Independent Component Estimation (NICE) flows. 7 8
  • Deep Generalized Convolutional SPNs (DGC-SPNs) using PyTorch. 10

The collection of implemented models is summarized in the following table. The supported data dimensionality for each model is showed in the Input Dimensionality column. Moreover, the Supervised column tells which model is suitable for a supervised learning task, other than density estimation task.

Model Description Input Dimensionality Supervised
Binary-CLT Binary Chow-Liu Tree (CLT) D
SPN Vanilla Sum-Product Network, using LearnSPN D
RAT-SPN Randomized and Tensorized Sum-Product Network D
DGC-SPN Deep Generalized Convolutional Sum-Product Network (1, D, D); (3, D, D)
MAF Masked Autoregressive Flow D
NICE Non-linear Independent Components Estimation Flow (1, H, W); (3, H, W)
RealNVP Real-valued Non-Volume-Preserving Flow (1, H, W); (3, H, W)

Installation & Documentation

The library can be installed either from PIP repository or by source code.

# Install from PIP repository
pip install deeprob-kit
# Install from `main` git branch
pip install -e git+https://github.com/deeprob-org/[email protected]#egg=deeprob-kit

The documentation is generated automatically by Sphinx (with Read-the-Docs theme), and it's hosted using GitHub Pages at deeprob-kit.

Datasets and Experiments

A collection of 29 binary datasets, which most of them are used in Probabilistic Circuits literature, can be found at UCLA-StarAI-Binary-Datasets.

Moreover, a collection of 5 continuous datasets, commonly present in works regarding Normalizing Flows, can be found at MAF-Continuous-Datasets.

After downloading them, the datasets must be stored in the experiments/datasets directory to be able to run the experiments (and Unit Tests). The experiments scripts are available in the experiments directory and can be launched using the command line by specifying the dataset and hyper-parameters.

Code Examples

A collection of code examples can be found in the examples directory. However, the examples are not intended to produce state-of-the-art results, but only to present the library.

The following table contains a description about them and a code complexity ranging from one to three stars. The Complexity column consists of a measure that roughly represents how many features of the library are used, as well as the expected time required to run the script.

Example Description Complexity
naive_model.py Learn, evaluate and print statistics about a naive factorized model.
spn_plot.py Instantiate, prune, marginalize and plot some SPNs.
clt_plot.py Learn a Binary CLT and plot it.
spn_moments.py Instantiate and compute moments statistics about the random variables.
sklearn_interface.py Learn and evaluate a SPN using the scikit-learn interface.
spn_custom_leaf.py Learn, evaluate and serialize a SPN with a user-defined leaf distribution.
clt_to_spn.py Learn a Binary CLT, convert it to a structured decomposable SPN and plot it.
spn_clt_em.py Instantiate a SPN with Binary CLTs, apply EM algorithm and sample some data.
clt_queries.py Learn a Binary CLT, plot it, run some queries and sample some data.
ratspn_mnist.py Train and evaluate a RAT-SPN on MNIST.
dgcspn_olivetti.py Train, evaluate and complete some images with DGC-SPN on Olivetti-Faces.
dgcspn_mnist.py Train and evaluate a DGC-SPN on MNIST.
nvp1d_moons.py Train and evaluate a 1D RealNVP on Moons dataset.
maf_cifar10.py Train and evaluate a MAF on CIFAR10.
nvp2d_mnist.py Train and evaluate a 2D RealNVP on MNIST.
nvp2d_cifar10.py Train and evaluate a 2D RealNVP on CIFAR10.
spn_latent_mnist.py Train and evaluate a SPN on MNIST using the features extracted by an autoencoder.

Related Repositories

References

1. Peharz et al. On Theoretical Properties of Sum-Product Networks. AISTATS (2015).

2. Poon and Domingos. Sum-Product Networks: A New Deep Architecture. UAI (2011).

3. Molina, Vergari et al. Mixed Sum-Product Networks: A Deep Architecture for Hybrid Domains. AAAI (2018).

4. Molina, Vergari et al. SPFLOW : An easy and extensible library for deep probabilistic learning using Sum-Product Networks. CoRR (2019).

5. Peharz et al. Probabilistic Deep Learning using Random Sum-Product Networks. UAI (2020).

6. Papamakarios et al. Masked Autoregressive Flow for Density Estimation. NeurIPS (2017).

7. Dinh et al. Density Estimation using RealNVP. ICLR (2017).

8. Dinh et al. NICE: Non-linear Independent Components Estimation. ICLR (2015).

9. Papamakarios, Nalisnick et al. Normalizing Flows for Probabilistic Modeling and Inference. JMLR (2021).

10. Van de Wolfshaar and Pronobis. Deep Generalized Convolutional Sum-Product Networks for Probabilistic Image Representations. PGM (2020).

11. Rahman et al. Cutset Networks: A Simple, Tractable, and Scalable Approach for Improving the Accuracy of Chow-Liu Trees. ECML-PKDD (2014).

12. Di Mauro, Gala et al. Random Probabilistic Circuits. UAI (2021).

13. Desana and Schnörr. Learning Arbitrary Sum-Product Network Leaves with Expectation-Maximization. CoRR (2016).

14. Peharz et al. Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits. ICML (2020).

Owner
DeeProb-org
DeeProb-org
Official release of MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis of Pancreatic Cancer axriv: http://arxiv.org/abs/2112.13513

MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis This is the official page of the MSHT with its experimental script and records. We de

Tianyi Zhang 53 Dec 27, 2022
Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting

Official code of APHYNITY Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting (ICLR 2021, Oral) Yuan Yin*, Vincent Le Guen*

Yuan Yin 24 Oct 24, 2022
Code accompanying the paper "ProxyFL: Decentralized Federated Learning through Proxy Model Sharing"

ProxyFL Code accompanying the paper "ProxyFL: Decentralized Federated Learning through Proxy Model Sharing" Authors: Shivam Kalra*, Junfeng Wen*, Jess

Layer6 Labs 14 Dec 06, 2022
Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectrum sensing.

Deep-Learning-based-Spectrum-Sensing Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectru

10 Dec 14, 2022
TensorFlow implementation of the paper "Hierarchical Attention Networks for Document Classification"

Hierarchical Attention Networks for Document Classification This is an implementation of the paper Hierarchical Attention Networks for Document Classi

Quoc-Tuan Truong 83 Dec 05, 2022
This project is a loose implementation of paper "Algorithmic Financial Trading with Deep Convolutional Neural Networks: Time Series to Image Conversion Approach"

Stock Market Buy/Sell/Hold prediction Using convolutional Neural Network This repo is an attempt to implement the research paper titled "Algorithmic F

Asutosh Nayak 136 Dec 28, 2022
Local-Global Stratified Transformer for Efficient Video Recognition

DualFormer This repo is the implementation of our manuscript entitled "Local-Global Stratified Transformer for Efficient Video Recognition". Our model

Sea AI Lab 19 Dec 07, 2022
Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations (CVPR, 2019)

Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations (CVPR 2019) To make better use of given limited labels, we propo

126 Sep 13, 2022
General purpose Slater-Koster tight-binding code for electronic structure calculations

tight-binder Introduction General purpose tight-binding code for electronic structure calculations based on the Slater-Koster approximation. The code

9 Dec 15, 2022
Constrained Logistic Regression - How to apply specific constraints to logistic regression's coefficients

Constrained Logistic Regression Sample implementation of constructing a logistic regression with given ranges on each of the feature's coefficients (v

1 Dec 29, 2021
The Pytorch implementation for "Video-Text Pre-training with Learned Regions"

Region_Learner The Pytorch implementation for "Video-Text Pre-training with Learned Regions" (arxiv) We are still cleaning up the code further and pre

Rui Yan 0 Mar 20, 2022
LUKE -- Language Understanding with Knowledge-based Embeddings

LUKE (Language Understanding with Knowledge-based Embeddings) is a new pre-trained contextualized representation of words and entities based on transf

Studio Ousia 587 Dec 30, 2022
Open & Efficient for Framework for Aspect-based Sentiment Analysis

PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis Fast & Low Memory requirement & Enhanced implementation of Local Context F

YangHeng 567 Jan 07, 2023
[SIGGRAPH Asia 2019] Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning

AGIS-Net Introduction This is the official PyTorch implementation of the Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning. paper | suppl

Yue Gao 102 Jan 02, 2023
Bayesian optimisation library developped by Huawei Noah's Ark Library

Bayesian Optimisation Research This directory contains official implementations for Bayesian optimisation works developped by Huawei R&D, Noah's Ark L

HUAWEI Noah's Ark Lab 395 Dec 30, 2022
K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce (EMNLP Founding 2021)

Introduction K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce. Installation PyTor

Xu Song 21 Nov 16, 2022
phylotorch-bito is a package providing an interface to BITO for phylotorch

phylotorch-bito phylotorch-bito is a package providing an interface to BITO for phylotorch Dependencies phylotorch BITO Installation Get the source co

Mathieu Fourment 2 Sep 01, 2022
Learning to Self-Train for Semi-Supervised Few-Shot

Learning to Self-Train for Semi-Supervised Few-Shot Classification This repository contains the TensorFlow implementation for NeurIPS 2019 Paper "Lear

86 Dec 29, 2022
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution

CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution This is the official implementation code of the paper "CondLaneNe

Alibaba Cloud 311 Dec 30, 2022
Diverse graph algorithms implemented using JGraphT library.

# 1. Installing Maven & Pandas First, please install Java (JDK11) and Python 3 if they are not already. Next, make sure that Maven (for importing J

See Woo Lee 3 Dec 17, 2022