PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation.

Overview

DosGAN-PyTorch

PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation.

Dependency:

Python 2.7

PyTorch 0.4.0

Usage:

Multiple identity translation

  1. Downloading Facescrub dataset following http://www.vintage.winklerbros.net/facescrub.html, and save it to root_dir.

  2. Splitting training and testing sets into train_dir and val_dir:

    $ python split2train_val.py root_dir train_dir val_dir

  3. Train a classifier for domain feature extraction and save it to dosgan_cls:

    $ python main_dosgan.py --mode cls --model_dir dosgan_cls --train_data_path train_dir --test_data_path val_dir

  4. Train DosGAN:

    $ python main_dosgan.py --mode train --model_dir dosgan --cls_save_dir dosgan_cls/models --train_data_path train_dir --test_data_path val_dir

  5. Train DosGAN-c:

    $ python main_dosgan.py --mode train --model_dir dosgan_c --cls_save_dir dosgan_cls/models --non_conditional false --train_data_path train_dir --test_data_path val_dir

  6. Test DosGAN:

    $ python main_dosgan.py --mode test --model_dir dosgan_c --cls_save_dir dosgan_cls/models --train_data_path train_dir --test_data_path val_dir

  7. Test DosGAN-c:

    $ python main_dosgan.py --mode test --model_dir dosgan_c --cls_save_dir dosgan_cls/models --non_conditional false --train_data_path train_dir --test_data_path val_dir

Other mutliple domain translation

  1. For other kinds of dataset, you can place train set and test set like:

    data
    ├── YOUR_DATASET_train_dir
        ├── damain1
        |   ├── 1.jpg
        |   ├── 2.jpg
        |   └── ...
        ├── domain2
        |   ├── 1.jpg
        |   ├── 2.jpg
        |   └── ...
        ├── domain3
        |   ├── 1.jpg
        |   ├── 2.jpg
        |   └── ...
        ...
    
    data
    ├── YOUR_DATASET_val_dir
        ├── damain1
        |   ├── 1.jpg
        |   ├── 2.jpg
        |   └── ...
        ├── domain2
        |   ├── 1.jpg
        |   ├── 2.jpg
        |   └── ...
        ├── domain3
        |   ├── 1.jpg
        |   ├── 2.jpg
        |   └── ...
        ...
    
  2. Giving multiple season translation for example (season dataset). Train a classifier for season domain feature extraction and save it to dosgan_season_cls:

    $ python main_dosgan.py --mode cls --model_dir dosgan_season_cls --ft_num 64 --c_dim 4 --image_size 256 --train_data_path season_train_dir --test_data_path season_val_dir

  3. Train DosGAN for multiple season translation:

    $ python main_dosgan.py --mode train --model_dir dosgan_season --cls_save_dir dosgan_season_cls/models --ft_num 64 --c_dim 4 --image_size 256 --lambda_fs 0.15 --num_iters 300000 --train_data_path season_train_dir --test_data_path season_val_dir

Results:

1. Multiple identity translation

# Results of DosGAN:

# Results of DosGAN-c:

2. Multiple season translation:

Owner
Ph.D. Candidate of University of Science and Technology of China
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Vide

Jonas Wu 232 Dec 29, 2022
[ WSDM '22 ] On Sampling Collaborative Filtering Datasets

On Sampling Collaborative Filtering Datasets This repository contains the implementation of many popular sampling strategies, along with various expli

Noveen Sachdeva 17 Dec 08, 2022
General purpose Slater-Koster tight-binding code for electronic structure calculations

tight-binder Introduction General purpose tight-binding code for electronic structure calculations based on the Slater-Koster approximation. The code

9 Dec 15, 2022
A repo with study material, exercises, examples, etc for Devnet SPAUTO

MPLS in the SDN Era -- DevNet SPAUTO Get right to the study material: Checkout the Wiki! A lab topology based on MPLS in the SDN era book used for 30

Hugo Tinoco 67 Nov 16, 2022
Drone detection using YOLOv5

This drone detection system uses YOLOv5 which is a family of object detection architectures and we have trained the model on Drone Dataset. Overview I

Tushar Sarkar 27 Dec 20, 2022
iBOT: Image BERT Pre-Training with Online Tokenizer

Image BERT Pre-Training with iBOT Official PyTorch implementation and pretrained models for paper iBOT: Image BERT Pre-Training with Online Tokenizer.

Bytedance Inc. 435 Jan 06, 2023
Analysis code and Latex source of the manuscript describing the conditional permutation test of confounding bias in predictive modelling.

Git repositoty of the manuscript entitled Statistical quantification of confounding bias in predictive modelling by Tamas Spisak The manuscript descri

PNI - Predictive Neuroimaging Lab, University Hospital Essen, Germany 0 Nov 22, 2021
CurriculumNet: Weakly Supervised Learning from Large-Scale Web Images

CurriculumNet Introduction This repo contains related code and models from the ECCV 2018 CurriculumNet paper. CurriculumNet is a new training strategy

156 Jul 04, 2022
Torchreid: Deep learning person re-identification in PyTorch.

Torchreid Torchreid is a library for deep-learning person re-identification, written in PyTorch. It features: multi-GPU training support both image- a

Kaiyang 3.7k Jan 05, 2023
The PASS dataset: pretrained models and how to get the data - PASS: Pictures without humAns for Self-Supervised Pretraining

The PASS dataset: pretrained models and how to get the data - PASS: Pictures without humAns for Self-Supervised Pretraining

Yuki M. Asano 249 Dec 22, 2022
Tutorial: Introduction to Graph Machine Learning, with Jupyter notebooks

GraphMLTutorialNLDL22 Tutorial NLDL22: Introduction to Graph Machine Learning, with Jupyter notebooks This tutorial takes place during the conference

UiT Machine Learning Group 3 Jan 10, 2022
Attention-guided gan for synthesizing IR images

SI-AGAN Attention-guided gan for synthesizing IR images This repository contains the Tensorflow code for "Pedestrian Gender Recognition by Style Trans

1 Oct 25, 2021
MVGCN: a novel multi-view graph convolutional network (MVGCN) framework for link prediction in biomedical bipartite networks.

MVGCN MVGCN: a novel multi-view graph convolutional network (MVGCN) framework for link prediction in biomedical bipartite networks. Developer: Fu Hait

13 Dec 01, 2022
git《Commonsense Knowledge Base Completion with Structural and Semantic Context》(AAAI 2020) GitHub: [fig1]

Commonsense Knowledge Base Completion with Structural and Semantic Context Code for the paper Commonsense Knowledge Base Completion with Structural an

AI2 96 Nov 05, 2022
A paper using optimal transport to solve the graph matching problem.

GOAT A paper using optimal transport to solve the graph matching problem. https://arxiv.org/abs/2111.05366 Repo structure .github: Files specifying ho

neurodata 8 Jan 04, 2023
A simple algorithm for extracting tree height in sparse scene from point cloud data.

TREE HEIGHT EXTRACTION IN SPARSE SCENES BASED ON UAV REMOTE SENSING This is the offical python implementation of the paper "Tree Height Extraction in

6 Oct 28, 2022
Show Me the Whole World: Towards Entire Item Space Exploration for Interactive Personalized Recommendations

HierarchicyBandit Introduction This is the implementation of WSDM 2022 paper : Show Me the Whole World: Towards Entire Item Space Exploration for Inte

yu song 5 Sep 09, 2022
Large-scale Hyperspectral Image Clustering Using Contrastive Learning, CIKM 21 Workshop

Spectral-spatial contrastive clustering (SSCC) Yaoming Cai, Yan Liu, Zijia Zhang, Zhihua Cai, and Xiaobo Liu, Large-scale Hyperspectral Image Clusteri

Yaoming Cai 4 Nov 02, 2022
Civsim is a basic civilisation simulation and modelling system built in Python 3.8.

Civsim Introduction Civsim is a basic civilisation simulation and modelling system built in Python 3.8. It requires the following packages: perlin_noi

17 Aug 08, 2022
Understanding the Effects of Datasets Characteristics on Offline Reinforcement Learning

Understanding the Effects of Datasets Characteristics on Offline Reinforcement Learning Kajetan Schweighofer1, Markus Hofmarcher1, Marius-Constantin D

Institute for Machine Learning, Johannes Kepler University Linz 17 Dec 28, 2022