Code for MSc Quantitative Finance Dissertation

Overview

MSc Dissertation Code ReadMe

Sector Volatility Prediction Performance Using GARCH Models and Artificial Neural Networks

Curtis Nybo

MSc Quantitative Finance Dissertation 2020

This repository contains the code developed for my MSc Dissertation.

The Data

The data is retrieved from the Kenneth R. French data library (1). The dataset contains all U.S stocks, sorted into five sectors by SIC code. The datasets I have used in this study are provided in the 'Data' folder. The folder contains the original dataset and a summary of the dataset, and each specific has been extracted to its own file.

The Code

The thesis paper uses six Jupyter notebooks that were developed for this project. Three GARCH specifications and three ANN architectures are considered with one notebook for each.

The ANN notebooks are comprised of one notebook per architecture (5,1,1), (5,12,1), and (5,50,1).

The GARCH notebooks are comprised of one notebook for the GARCH(p,q), GARCH(1,1), and EGARCH(p,q) model.

How to use

Each notebook is commented throughout to guide reproducibility. The data in this repository needs to be placed in a local directory, then the code needs to be changed to point to that directory. The script should then read in the data and follow the same computations in this study.

To replicate the conda environment used to develop and run the code, see the tensorflowML.yml file in the repository. This contains all Python packages used and their corresponding versions. This yml file can be directly imported into Conda to reproduce the environment used in this study.

References

Many thanks to those who provided resources and prior work to leverage in my notebooks and scripts. More specific referencing is completed in each notebook.

(1) Data Library - Kenneth R. French - https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html - 2020

(2) Time Series Prediction with LSTM Recurrent Neural Networks in Python with Keras - Jason Brownlee, PhD - https://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras/ - 2016

(3) Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition - Aurélien Géron - https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/ - 2019

(4) TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems - https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45166.pdf - 2015

(5) Kevin Sheppard, Stanislav Khrapov, Gábor Lipták, mikedeltalima, Rob Capellini, esvhd, … jbrockmendel. (2019, November 22). bashtage/arch: Release 4.13 (Version 4.13). Zenodo. http://doi.org/10.5281/zenodo.3551028

(6) Auquan - Time Series Analysis for Financial Data VI— GARCH model and predicting SPX returns - https://medium.com/auquan/time-series-analysis-for-finance-arch-garch-models-822f87f1d755 - 2017

(7) Sarit Maitra - Forecasting using GARCH Processes & Monte-Carlo Simulations: statistical analysis & mathematical model using Python - https://towardsdatascience.com/garch-processes-monte-carlo-simulations-for-analytical-forecast-27edf77b2787 - 2019

Plenoxels: Radiance Fields without Neural Networks, Code release WIP

Plenoxels: Radiance Fields without Neural Networks Alex Yu*, Sara Fridovich-Keil*, Matthew Tancik, Qinhong Chen, Benjamin Recht, Angjoo Kanazawa UC Be

Alex Yu 2.3k Dec 30, 2022
PyTorch Implementation for Deep Metric Learning Pipelines

Easily Extendable Basic Deep Metric Learning Pipeline Karsten Roth ([email 

Karsten Roth 543 Jan 04, 2023
[ICCV 2021] HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration

HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration Introduction The repository contains the source code and pre-tr

Intelligent Sensing, Perception and Computing Group 55 Dec 14, 2022
💡 Type hints for Numpy

Type hints with dynamic checks for Numpy! (❒) Installation pip install nptyping (❒) Usage (❒) NDArray nptyping.NDArray lets you define the shape and

Ramon Hagenaars 377 Dec 28, 2022
Vpw analyzer - A visual J1850 VPW analyzer written in Python

VPW Analyzer A visual J1850 VPW analyzer written in Python Requires Tkinter, Pan

7 May 01, 2022
An off-line judger supporting distributed problem repositories

Thaw 中文 | English Thaw is an off-line judger supporting distributed problem repositories. Everyone can use Thaw release problems with license on GitHu

countercurrent_time 2 Jan 09, 2022
The official PyTorch code for 'DER: Dynamically Expandable Representation for Class Incremental Learning' accepted by CVPR2021

DER.ClassIL.Pytorch This repo is the official implementation of DER: Dynamically Expandable Representation for Class Incremental Learning (CVPR 2021)

rhyssiyan 108 Jan 01, 2023
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data

Near-Duplicate Video Retrieval with Deep Metric Learning This repository contains the Tensorflow implementation of the paper Near-Duplicate Video Retr

Liming Jiang 238 Nov 25, 2022
AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation

AtlasNet [Project Page] [Paper] [Talk] AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation Thibault Groueix, Matthew Fisher, Vladimir

577 Dec 17, 2022
RepVGG: Making VGG-style ConvNets Great Again

This repository is the code that needs to be submitted for OpenMMLab Algorithm Ecological Challenge,the paper is RepVGG: Making VGG-style ConvNets Great Again

Ty Feng 62 May 21, 2022
Code for the paper "There is no Double-Descent in Random Forests"

Code for the paper "There is no Double-Descent in Random Forests" This repository contains the code to run the experiments for our paper called "There

2 Jan 14, 2022
Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image classification, in Pytorch

Transformer in Transformer Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image c

Phil Wang 272 Dec 23, 2022
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning accelerators for distributed training using the Ray distributed

166 Dec 27, 2022
A real world application of a Recurrent Neural Network on a binary classification of time series data

What is this This is a real world application of a Recurrent Neural Network on a binary classification of time series data. This project includes data

Josep Maria Salvia Hornos 2 Jan 30, 2022
An interpreter for RASP as described in the ICML 2021 paper "Thinking Like Transformers"

RASP Setup Mac or Linux Run ./setup.sh . It will create a python3 virtual environment and install the dependencies for RASP. It will also try to insta

141 Jan 03, 2023
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning plugins for distributed training using the Ray distributed compu

167 Jan 02, 2023
PyTorch implementation of Algorithm 1 of "On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models"

Code for On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models This repository will reproduce the main results from our pape

Mitch Hill 32 Nov 25, 2022
Pytorch implementation of AngularGrad: A New Optimization Technique for Angular Convergence of Convolutional Neural Networks

AngularGrad Optimizer This repository contains the oficial implementation for AngularGrad: A New Optimization Technique for Angular Convergence of Con

mario 124 Sep 16, 2022
DSTC10 Track 2 - Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations

DSTC10 Track 2 - Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations This repository contains the data, scripts and baseline co

Alexa 51 Dec 17, 2022
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022