[CVPR2022] Representation Compensation Networks for Continual Semantic Segmentation

Overview

RCIL

[CVPR2022] Representation Compensation Networks for Continual Semantic Segmentation
Chang-Bin Zhang1, Jia-Wen Xiao1, Xialei Liu1, Ying-Cong Chen2, Ming-Ming Cheng1
1 College of Computer Science, Nankai University
2 The Hong Kong University of Science and Technology

Conference Paper

PWC PWC PWC PWC PWC PWC PWC PWC PWC PWC PWC PWC PWC

Method

截屏2022-04-09 上午1 02 44

Update

  • Coming Soon add data folder
  • Coming Soon init code for Classification
  • Coming Soon add training scripts for ADE20K and cityscapes
  • 09/04/2022 init code for segmentation
  • 09/04/2022 init readme

Benchmark and Setting

There are two commonly used settings, disjoint and overlapped. In the disjoint setting, assuming we know all classes in the future, the images in the current training step do not contain any classes in the future. The overlapped setting allows potential classes in the future to appear in the current training images. We call each training on the newly added dataset as a step. Formally, X-Y denotes the continual setting in our experiments, where X denotes the number of classes that we need to train in the first step. In each subsequent learning step, the newly added dataset contains Y classes.

There are some settings reported in our paper. You can also try it on other any custom settings.

  • Continual Class Segmentation:

    1. PASCAL VOC 2012 dataset:
      • 15-5 overlapped
      • 15-5 disjoint
      • 15-1 overlapped
      • 15-1 disjoint
      • 10-1 overlapped
      • 10-1 disjoint
    2. ADE20K dataset:
      • 100-50 overlapped
      • 100-10 overlapped
      • 50-50 overlapped
      • 100-5 overlapped
  • Continual Domain Segmentation:

    1. Cityscapes:
      • 11-5
      • 11-1
      • 1-1
  • Extension Experiments on Continual Classification

    1. ImageNet-100
      • 50-10

Performance

  • Continual Class Segmentation on PASCAL VOC 2012
Method Pub. 15-5 disjoint 15-5 overlapped 15-1 disjoint 15-1 overlapped 10-1 disjoint 10-1 overlapped
LWF TPAMI 2017 54.9 55.0 5.3 5.5 4.3 4.8
ILT ICCVW 2019 58.9 61.3 7.9 9.2 5.4 5.5
MiB CVPR 2020 65.9 70.0 39.9 32.2 6.9 20.1
SDR CVPR 2021 67.3 70.1 48.7 39.5 14.3 25.1
PLOP CVPR 2021 64.3 70.1 46.5 54.6 8.4 30.5
Ours CVPR 2022 67.3 72.4 54.7 59.4 18.2 34.3
  • Continual Class Segmentation on ADE20K
Method Pub. 100-50 overlapped 100-10 overlapped 50-50 overlapped 100-5 overlapped
ILT ICCVW 2019 17.0 1.1 9.7 0.5
MiB CVPR 2020 32.8 29.2 29.3 25.9
PLOP CVPR 2021 32.9 31.6 30.4 28.7
Ours CVPR 2022 34.5 32.1 32.5 29.6
  • Continual Domain Segmentation on Cityscapes
Method Pub. 11-5 11-1 1-1
LWF TPAMI 2017 59.7 57.3 33.0
LWF-MC CVPR 2017 58.7 57.0 31.4
ILT ICCVW 2019 59.1 57.8 30.1
MiB CVPR 2020 61.5 60.0 42.2
PLOP CVPR 2021 63.5 62.1 45.2
Ours CVPR 2022 64.3 63.0 48.9

Dataset Prepare

  • PASCVAL VOC 2012
    sh data/download_voc.sh
  • ADE20K
    sh data/download_ade.sh
  • Cityscapes
    sh data/download_cityscapes.sh

Environment

  1. conda install --yes --file requirements.txt
  2. Install inplace-abn

Training

  1. Dowload pretrained model from ResNet-101_iabn to pretrained/
  2. We have prepared some training scripts in scripts/. You can train the model by
sh scripts/voc/rcil_10-1-overlap.sh

Inference

You can simply modify the bash file by add --test, like

CUDA_VISIBLE_DEVICES=${GPU} python3 -m torch.distributed.launch --master_port ${PORT} --nproc_per_node=${NB_GPU} run.py --data xxx ... --test

Reference

If this work is useful for you, please cite us by:

@inproceedings{zhangCvpr22ContinuSSeg,
  title={Representation Compensation Networks for Continual Semantic Segmentation},
  author={Chang-Bin Zhang and Jiawen Xiao and Xialei Liu and Yingcong Chen and Ming-Ming Cheng},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
  year={2022}
}

Connect

If you have any questions about this work, please feel easy to connect with us (zhangchbin ^ gmail.com).

Thanks

This code is heavily borrowed from [MiB] and [PLOP].

Awesome Continual Segmentation

There is a collection of AWESOME things about continual semantic segmentation, including papers, code, demos, etc. Feel free to pull request and star.

2022

  • Representation Compensation Networks for Continual Semantic Segmentation [CVPR 2022] [PyTorch]
  • Self-training for Class-incremental Semantic Segmentation [TNNLS 2022] [PyTorch]
  • Uncertainty-aware Contrastive Distillation for Incremental Semantic Segmentation [TPAMI 2022] [[PyTorch]]

2021

  • PLOP: Learning without Forgetting for Continual Semantic Segmentation [CVPR 2021] [PyTorch]
  • Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations [CVPR2021] [PyTorch]
  • An EM Framework for Online Incremental Learning of Semantic Segmentation [ACM MM 2021] [PyTorch]
  • SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning [NeurIPS 2021] [PyTorch]

2020

2019

You might also like...
PyTorch implementation of our Adam-NSCL algorithm from our CVPR2021 (oral) paper "Training Networks in Null Space for Continual Learning"

Adam-NSCL This is a PyTorch implementation of Adam-NSCL algorithm for continual learning from our CVPR2021 (oral) paper: Title: Training Networks in N

Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation, CVPR 2018
Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation, CVPR 2018

Learning Pixel-level Semantic Affinity with Image-level Supervision This code is deprecated. Please see https://github.com/jiwoon-ahn/irn instead. Int

Siamese-nn-semantic-text-similarity - A repository containing comprehensive Neural Networks based PyTorch implementations for the semantic text similarity task
This is an official implementation of the CVPR2022 paper "Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots".

Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots Blind2Unblind Citing Blind2Unblind @inproceedings{wang2022blind2unblind, tit

PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)
PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)

PSTR (CVPR2022) This code is an official implementation of "PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)". End-to-end one-step

CVPR2022 paper
CVPR2022 paper "Dense Learning based Semi-Supervised Object Detection"

[CVPR2022] DSL: Dense Learning based Semi-Supervised Object Detection DSL is the first work on Anchor-Free detector for Semi-Supervised Object Detecti

[CVPR2022] Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos
[CVPR2022] Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos

Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos Created by Muheng Li, Lei Chen, Yueqi Duan, Zhilan Hu, Jianjiang Feng, Jie

The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift
The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift

TwoStageAlign The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift Pa

Official code for
Official code for "Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes", CVPR2022

[CVPR 2022] Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes Dongkwon Jin, Wonhui Park, Seong-Gyun Jeong, Heeyeon Kwon, and Cha

Comments
  • Reproduce ADE20k

    Reproduce ADE20k

    Hi, thanks for sharing the code.

    I'm trying to reproduce the results for 100-50 ADE20k. Here are the hyper-parameters I used: --pod local --pod_factor 0.001 --pod_logits --classif_adaptive_factor --init_balanced --unce --unkd

    I get the all-mIoU=29.4%, which is much lower than the reported mIoU (34.5%). Could you please share with me the parameters you used to get the reported mIoU?

    opened by HieuPhan33 10
  • 15-1 Pascal-VOC Reproduce

    15-1 Pascal-VOC Reproduce

    Hi, I couldn't reproduce the results for 15-1 Pascal-VOC. I'm running the script voc/plop_15-1-overlap.sh. Since I have two GPUs with 24GB, I adjust the batch size to 12 and trained on 2 GPUs. This ensures the total batch size is 24 like your settings.

    Here are the results | | 0-15 | 16-20 | all | | ---- | ---- | --- | ---- | | Reproduce | 63.41 | 19.25 | 52.90 | | Reported | 70.60 | 23.70 | 59.40 |

    The results are far lower than the results reported in the paper. Could you please advise?

    opened by HieuPhan33 6
  • Reproduced results lower than the reported ones

    Reproduced results lower than the reported ones

    Hi, I directly ran the released codes without any modification. However, I found that the obtained results are lower than the reported ones by >1 percent point, especially the 10-1 setting with a large gap on the base (0-10) classes.

    Relevant log files are provided for your reference. Could you advise the possible reasons that may cause such a problem? Thanks a lot.

    | | 15-5 | | | 15-1 | | | 10-1 | | | |------------|------|-------|------|------|-------|------|------|-------|------| | | 0-15 | 16-20 | all | 0-15 | 16-20 | all | 0-10 | 11-20 | all | | Reported | 78.8 | 52.0 | 72.4 | 70.6 | 23.7 | 59.4 | 55.4 | 15.1 | 34.3 | | Reproduced | 76.7 | 48.4 | 70.0 | 69.0 | 20.5 | 57.4 | 38.0 | 13.4 | 26.3 |

    opened by Ze-Yang 3
  • Full results on Cityscapes

    Full results on Cityscapes

    Nice work! Could you publish the scripts and the corresponding results on Cityscapes? I failed to reproduce the experimental results reported in the paper. I set the batch size as 24. The initial learning rate is 0.02 for the first training step and 0.001 for the next continual learning steps. I train the model for each step with 50 epochs as the paper suggested.

    opened by XiaorongLi-95 4
Owner
Chang-Bin Zhang
Master student at Nankai University.
Chang-Bin Zhang
Neural network for digit classification powered by cuda

cuda_nn_mnist Neural network library for digit classification powered by cuda Resources The library was built to work with MNIST dataset. python-mnist

Nikita Ardashev 1 Dec 20, 2021
Single-step adversarial training (AT) has received wide attention as it proved to be both efficient and robust.

Subspace Adversarial Training Single-step adversarial training (AT) has received wide attention as it proved to be both efficient and robust. However,

15 Sep 02, 2022
Expressive Power of Invariant and Equivaraint Graph Neural Networks (ICLR 2021)

Expressive Power of Invariant and Equivaraint Graph Neural Networks In this repository, we show how to use powerful GNN (2-FGNN) to solve a graph alig

Marc Lelarge 36 Dec 12, 2022
GAN-based 3D human pose estimation model for 3DV'17 paper

Tensorflow implementation for 3DV 2017 conference paper "Adversarially Parameterized Optimization for 3D Human Pose Estimation". @inproceedings{jack20

Dominic Jack 15 Feb 27, 2021
“英特尔创新大师杯”深度学习挑战赛 赛道3:CCKS2021中文NLP地址相关性任务

ccks2021-track3 CCKS2021中文NLP地址相关性任务-赛道三-冠军方案 团队:我的加菲鱼- wodejiafeiyu 初赛第二/复赛第一/决赛第一 前言 19年开始,陆陆续续参加了一些比赛,拿到过一些top,比较懒一直都没分享过,这次比较幸运又拿了top1,打算分享下 分类的任务

shaochenjie 131 Dec 31, 2022
A new benchmark for Icon Question Answering (IconQA) and a large-scale icon dataset Icon645.

IconQA About IconQA is a new diverse abstract visual question answering dataset that highlights the importance of abstract diagram understanding and c

Pan Lu 24 Dec 30, 2022
Deep Learning Interviews book: Hundreds of fully solved job interview questions from a wide range of key topics in AI.

This book was written for you: an aspiring data scientist with a quantitative background, facing down the gauntlet of the interview process in an increasingly competitive field. For most of you, the

4.1k Dec 28, 2022
This repository contains PyTorch models for SpecTr (Spectral Transformer).

SpecTr: Spectral Transformer for Hyperspectral Pathology Image Segmentation This repository contains PyTorch models for SpecTr (Spectral Transformer).

Boxiang Yun 45 Dec 13, 2022
Simple and Distributed Machine Learning

Synapse Machine Learning SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. Sy

Microsoft 3.9k Dec 30, 2022
基于AlphaPose的TensorRT加速

1. Requirements CUDA 11.1 TensorRT 7.2.2 Python 3.8.5 Cython PyTorch 1.8.1 torchvision 0.9.1 numpy 1.17.4 (numpy版本过高会出报错 this issue ) python-package s

52 Dec 06, 2022
High-fidelity 3D Model Compression based on Key Spheres

High-fidelity 3D Model Compression based on Key Spheres This repository contains the implementation of the paper: Yuanzhan Li, Yuqi Liu, Yujie Lu, Siy

5 Oct 11, 2022
Machine learning algorithms for many-body quantum systems

NetKet NetKet is an open-source project delivering cutting-edge methods for the study of many-body quantum systems with artificial neural networks and

NetKet 413 Dec 31, 2022
SimplEx - Explaining Latent Representations with a Corpus of Examples

SimplEx - Explaining Latent Representations with a Corpus of Examples Code Author: Jonathan Crabbé ( Jonathan Crabbé 14 Dec 15, 2022

Voice Conversion by CycleGAN (语音克隆/语音转换):CycleGAN-VC3

CycleGAN-VC3-PyTorch 中文说明 | English This code is a PyTorch implementation for paper: CycleGAN-VC3: Examining and Improving CycleGAN-VCs for Mel-spectr

Kun Ma 110 Dec 24, 2022
Repository for MDPGT

MD-PGT Repository for implementing and reproducing the results for the paper MDPGT: Momentum-based Decentralized Policy Gradient Tracking. Available E

Xian Yeow Lee 2 Dec 30, 2021
Codes for the compilation and visualization examples to the HIF vegetation dataset

High-impedance vegetation fault dataset This repository contains the codes that compile the "Vegetation Conduction Ignition Test Report" data, which a

1 Dec 12, 2021
Source Code for DialogBERT: Discourse-Aware Response Generation via Learning to Recover and Rank Utterances (https://arxiv.org/pdf/2012.01775.pdf)

DialogBERT This is a PyTorch implementation of the DialogBERT model described in DialogBERT: Neural Response Generation via Hierarchical BERT with Dis

Xiaodong Gu 67 Jan 06, 2023
Convolutional Neural Networks

Darknet Darknet is an open source neural network framework written in C and CUDA. It is fast, easy to install, and supports CPU and GPU computation. D

Joseph Redmon 23.7k Jan 05, 2023
CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image Segmentation

CoTr: Efficient 3D Medical Image Segmentation by bridging CNN and Transformer This is the official pytorch implementation of the CoTr: Paper: CoTr: Ef

218 Dec 25, 2022
(SIGIR2020) “Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback’’

Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback About This repository accompanies the real-world experiments conducted i

yuta-saito 19 Dec 01, 2022