A lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look At CoefficienTs)

Overview

Real-time Instance Segmentation and Lane Detection

This is a lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look At CoefficienTs), which is a simple, fully convolutional model developed by Daniel Bolya, Chong Zhou, Fanyi Xiao and Yong Jae Lee in 2019 (see repository https://github.com/dbolya/yolact). Here are the codes for their papers:

In order to use YOLACT++, make sure you compile the DCNv2 code. (See Installation)

Sample running

image

Installation

  • Clone this repository and enter it:
    git clone https://github.com/jkd2021/YOLACT-with-lane-detection.git
    cd YOLACT-with-lane-detection
  • Set up the environment using one of the following methods:
    • Using Anaconda
      • Run conda env create -f environment.yml
    • Manually with pip
      • Set up a Python3 environment (e.g., using virtenv).
      • Install Pytorch 1.0.1 (or higher) and TorchVision.
      • Install some other packages:
        # Cython needs to be installed before pycocotools
        pip install cython
        pip install opencv-python pillow pycocotools matplotlib 
  • If you'd like to train YOLACT, download the COCO dataset and the 2014/2017 annotations. Note that this script will take a while and dump 21gb of files into ./data/coco.
    sh data/scripts/COCO.sh
  • If you'd like to evaluate YOLACT on test-dev, download test-dev with this script.
    sh data/scripts/COCO_test.sh
  • If you want to use YOLACT++, compile deformable convolutional layers (from DCNv2). Make sure you have the latest CUDA toolkit installed from NVidia's Website.
    cd external/DCNv2
    python setup.py build develop

Evaluation

See Evaluation in original YOLACT models https://github.com/dbolya/yolact#evaluation (released on April 5th, 2019).

To evalute the model, put the corresponding weights file in the ./weights directory and run one of the following commands with your own image and video. The name of each config is everything before the numbers in the file name (e.g., yolact_base for yolact_base_54_800000.pth).

Images

# Display qualitative results on the specified image.
python eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --image=my_image.png

# Process an image and save it to another file.
python eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --image=input_image.png:output_image.png

# Process a whole folder of images.
python eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --images=path/to/input/folder:path/to/output/folder

Video

# Display a video in real-time. "--video_multiframe" will process that many frames at once for improved performance.
# If you want, use "--display_fps" to draw the FPS directly on the frame.
python eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --video_multiframe=4 --video=my_video.mp4

# Display a webcam feed in real-time. If you have multiple webcams pass the index of the webcam you want instead of 0.
python eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --video_multiframe=4 --video=0

# Process a video and save it to another file. This uses the same pipeline as the ones above now, so it's fast!
python eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --video_multiframe=4 --video=input_video.mp4:output_video.mp4

# Process a video with higher frame rate and save it to another file.
python eval.py --trained_model=weights/yolact_resnet50_54_800000.pth --score_threshold=0.3 --top_k=20 --video_multiframe=16 --display_fps --video=input_video.mp4:output_video.mp4

# Process a video with higher frame rate and display it
python eval.py --trained_model=weights/yolact_resnet50_54_800000.pth --score_threshold=0.3 --top_k=20 --video_multiframe=16 --display_fps --video=input_video.mp4

As you can tell, eval.py can do a ton of stuff. Run the --help command to see everything it can do.

python eval.py --help

Training

see Training in original repository https://github.com/dbolya/yolact#training

Citation

If you use any code from here base in your work, please cite

@inproceedings{yolact-iccv2019,
  author    = {Daniel Bolya and Chong Zhou and Fanyi Xiao and Yong Jae Lee},
  title     = {YOLACT: {Real-time} Instance Segmentation},
  booktitle = {ICCV},
  year      = {2019},
}

For YOLACT++, please cite

@article{yolact-plus-tpami2020,
  author  = {Daniel Bolya and Chong Zhou and Fanyi Xiao and Yong Jae Lee},
  journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence}, 
  title   = {YOLACT++: Better Real-time Instance Segmentation}, 
  year    = {2020},
}
TensorFlow2 Classification Model Zoo playing with TensorFlow2 on the CIFAR-10 dataset.

Training CIFAR-10 with TensorFlow2(TF2) TensorFlow2 Classification Model Zoo. I'm playing with TensorFlow2 on the CIFAR-10 dataset. Architectures LeNe

Chia-Hung Yuan 16 Sep 27, 2022
CRNN With PyTorch

CRNN-PyTorch Implementation of https://arxiv.org/abs/1507.05717

Vadim 4 Sep 01, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers ๐Ÿ”ฅ

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022
Robot Servers and Server Manager software for robo-gym

robo-gym-server-modules Robot Servers and Server Manager software for robo-gym. For info on how to use this package please visit the robo-gym website

JR ROBOTICS 4 Aug 16, 2021
CUP-DNN is a deep neural network model used to predict tissues of origin for cancers of unknown of primary.

CUP-DNN CUP-DNN is a deep neural network model used to predict tissues of origin for cancers of unknown of primary. The model was trained on the expre

1 Oct 27, 2021
NumPy๋กœ ๊ตฌํ˜„ํ•œ ๋”ฅ๋Ÿฌ๋‹ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์ž…๋‹ˆ๋‹ค. (์ž๋™ ๋ฏธ๋ถ„ ์ง€์›)

Deep Learning Library only using NumPy ๋ณธ ๋ ˆํฌ์ง€ํ† ๋ฆฌ๋Š” NumPy ๋งŒ์œผ๋กœ ๊ตฌํ˜„ํ•œ ๋”ฅ๋Ÿฌ๋‹ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์ž…๋‹ˆ๋‹ค. ์ž๋™ ๋ฏธ๋ถ„์ด ๊ตฌํ˜„๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค. ์ž๋™ ๋ฏธ๋ถ„ ์ž๋™ ๋ฏธ๋ถ„์€ ๋ฏธ๋ถ„์„ ์ž๋™์œผ๋กœ ๊ณ„์‚ฐํ•ด์ฃผ๋Š” ๊ธฐ๋Šฅ์ž…๋‹ˆ๋‹ค. ์•„๋ž˜ ์ฝ”๋“œ๋Š” ์ž๋™ ๋ฏธ๋ถ„์„ ํ™œ์šฉํ•ด ์—ญ์ „ํŒŒ

์กฐ์ค€ํฌ 17 Aug 16, 2022
Official Code for ICML 2021 paper "Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline"

Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, Jia Deng Internati

Princeton Vision & Learning Lab 115 Jan 04, 2023
Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr\"om Method (NeurIPS 2021)

Skyformer This repository is the official implementation of Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr"om Method (NeurIPS 2021).

Qi Zeng 46 Sep 20, 2022
No-reference Image Quality Assessment(NIQA) Algorithms (BRISQUE, NIQE, PIQE, RankIQA, MetaIQA)

No-Reference Image Quality Assessment Algorithms No-reference Image Quality Assessment(NIQA) is a task of evaluating an image without a reference imag

Dae-Young Song 26 Jan 04, 2023
Normalizing Flows with a resampled base distribution

Resampling Base Distributions of Normalizing Flows Normalizing flows are a popular class of models for approximating probability distributions. Howeve

Vincent Stimper 24 Nov 03, 2022
A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction.

Graph2SMILES A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction. 1. Environmental setup System requirements Ubuntu:

29 Nov 18, 2022
This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels].

CGPN This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels]. Req

10 Sep 12, 2022
Underwater image enhancement

LANet Our work proposes an adaptive learning attention network (LANet) to solve the problem of color casts and low illumination in underwater images.

LiuShiBen 7 Sep 14, 2022
โ€œRobust Lightweight Facial Expression Recognition Network with Label Distribution Trainingโ€, AAAI 2021.

EfficientFace Zengqun Zhao, Qingshan Liu, Feng Zhou. "Robust Lightweight Facial Expression Recognition Network with Label Distribution Training". AAAI

Zengqun Zhao 119 Jan 08, 2023
Official implementation for paper Render In-between: Motion Guided Video Synthesis for Action Interpolation

Render In-between: Motion Guided Video Synthesis for Action Interpolation [Paper] [Supp] [arXiv] [4min Video] This is the official Pytorch implementat

8 Oct 27, 2022
TJU Deep Learning & Neural Network

Deep_Learning & Neural_Network_Lab ๅฎž้ชŒ็Žฏๅขƒ Python 3.9 Anaconda3(ๅฎ˜็ฝ‘ไธ‹่ฝฝๆˆ–ๆธ…ๅŽ้•œๅƒ้ƒฝ่กŒ) PyTorch 1.10.1(ๅฎ‰่ฃ…ไปฃ็ ๅฆ‚ไธ‹) conda install pytorch torchvision torchaudio cudatool

St3ve Lee 1 Jan 19, 2022
OpenPose: Real-time multi-person keypoint detection library for body, face, hands, and foot estimation

Build Type Linux MacOS Windows Build Status OpenPose has represented the first real-time multi-person system to jointly detect human body, hand, facia

25.7k Jan 09, 2023
A generator of point clouds dataset for PyPipes.

CloudPipesGenerator Documentation | Colab Notebooks | Video Tutorials | Master Degree website A generator of point clouds dataset for PyPipes. TODO Us

1 Jan 13, 2022
Spatial-Temporal Transformer for Dynamic Scene Graph Generation, ICCV2021

Spatial-Temporal Transformer for Dynamic Scene Graph Generation Pytorch Implementation of our paper Spatial-Temporal Transformer for Dynamic Scene Gra

Yuren Cong 119 Jan 01, 2023
A simple python program that can be used to implement user authentication tokens into your program...

token-generator A simple python module that can be used by developers to implement user authentication tokens into your program... code examples creat

octo 6 Apr 18, 2022