Semi-Supervised Learning with Ladder Networks in Keras. Get 98% test accuracy on MNIST with just 100 labeled examples !

Overview

Semi-Supervised Learning with Ladder Networks in Keras

This is an implementation of Ladder Network in Keras. Ladder network is a model for semi-supervised learning. Refer to the paper titled Semi-Supervised Learning with Ladder Networks by A Rasmus, H Valpola, M Honkala,M Berglund, and T Raiko

This implementation was used in the official code of our paper Unsupervised Clustering using Pseudo-semi-supervised Learning . The code can be found here and the blog post can be found here

The model achives 98% test accuracy on MNIST with just 100 labeled examples.

The code only works with Tensorflow backend.

Requirements

  • Python 2.7+/3.6+
  • Tensorflow (1.4.0)
  • numpy
  • keras (2.1.4)

Note that other versions of tensorflow/keras should also work.

How to use

Load the dataset

from keras.datasets import mnist
import keras
import random

# get the dataset
(x_train, y_train), (x_test, y_test) = mnist.load_data()

x_train = x_train.reshape(60000, 28*28).astype('float32')/255.0
x_test = x_test.reshape(10000, 28*28).astype('float32')/255.0

y_train = keras.utils.to_categorical( y_train )
y_test = keras.utils.to_categorical( y_test )

# only select 100 training samples 
idxs_annot = range( x_train.shape[0])
random.seed(0)
random.shuffle( idxs_annot )
idxs_annot = idxs_annot[ :100 ]

x_train_unlabeled = x_train
x_train_labeled = x_train[ idxs_annot ]
y_train_labeled = y_train[ idxs_annot  ]

Repeat the labeled dataset to match the shapes

n_rep = x_train_unlabeled.shape[0] / x_train_labeled.shape[0]
x_train_labeled_rep = np.concatenate([x_train_labeled]*n_rep)
y_train_labeled_rep = np.concatenate([y_train_labeled]*n_rep)

Initialize the model

from ladder_net import get_ladder_network_fc
inp_size = 28*28 # size of mnist dataset 
n_classes = 10
model = get_ladder_network_fc( layer_sizes = [ inp_size , 1000, 500, 250, 250, 250, n_classes ]  )

Train the model

model.fit([ x_train_labeled_rep , x_train_unlabeled   ] , y_train_labeled_rep , epochs=100)

Get the test accuracy

from sklearn.metrics import accuracy_score
y_test_pr = model.test_model.predict(x_test , batch_size=100 )

print "test accuracy" , accuracy_score(y_test.argmax(-1) , y_test_pr.argmax(-1)  )
Owner
Divam Gupta
Graduate student at Carnegie Mellon University | Former Research Fellow at Microsoft Research
Divam Gupta
Prometheus Exporter for data scraped from datenplattform.darmstadt.de

darmstadt-opendata-exporter Scrapes data from https://datenplattform.darmstadt.de and presents it in the Prometheus Exposition format. Pull requests w

Martin Weinelt 2 Apr 12, 2022
End-To-End Memory Network using Tensorflow

MemN2N Implementation of End-To-End Memory Networks with sklearn-like interface using Tensorflow. Tasks are from the bAbl dataset. Get Started git clo

Dominique Luna 339 Oct 27, 2022
Train emoji embeddings based on emoji descriptions.

emoji2vec This is my attempt to train, visualize and evaluate emoji embeddings as presented by Ben Eisner, Tim RocktÀschel, Isabelle Augenstein, Matko

Miruna Pislar 17 Sep 03, 2022
Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation

DistMIS Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation. DistriMIS Distributing Deep Learning Hyperparameter Tuning

HiEST 2 Sep 09, 2022
Reading list for research topics in Masked Image Modeling

awesome-MIM Reading list for research topics in Masked Image Modeling(MIM). We list the most popular methods for MIM, if I missed something, please su

ligang 231 Dec 07, 2022
Automated detection of anomalous exoplanet transits in light curve data.

Automatically detecting anomalous exoplanet transits This repository contains the source code for the paper "Automatically detecting anomalous exoplan

1 Feb 01, 2022
Resources related to our paper "CLIN-X: pre-trained language models and a study on cross-task transfer for concept extraction in the clinical domain"

CLIN-X (CLIN-X-ES) & (CLIN-X-EN) This repository holds the companion code for the system reported in the paper: "CLIN-X: pre-trained language models a

Bosch Research 4 Dec 05, 2022
Multi-Glimpse Network With Python

Multi-Glimpse Network Multi-Glimpse Network: A Robust and Efficient Classification Architecture based on Recurrent Downsampled Attention arXiv Require

9 May 10, 2022
[ACM MM 2021] Joint Implicit Image Function for Guided Depth Super-Resolution

Joint Implicit Image Function for Guided Depth Super-Resolution This repository contains the code for: Joint Implicit Image Function for Guided Depth

hawkey 78 Dec 27, 2022
A gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor.

OpenHands OpenHands is a gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor. Currently the system can iden

Paul Treanor 12 Jan 10, 2022
Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Nikolas Petrou 1 Jan 13, 2022
Python scripts for performing lane detection using the LSTR model in ONNX

ONNX LSTR Lane Detection Python scripts for performing lane detection using the Lane Shape Prediction with Transformers (LSTR) model in ONNX. Requirem

Ibai Gorordo 29 Aug 30, 2022
A PyTorch implementation of the continual learning experiments with deep neural networks

Brain-Inspired Replay A PyTorch implementation of the continual learning experiments with deep neural networks described in the following paper: Brain

182 Dec 27, 2022
Code for KDD'20 "An Efficient Neighborhood-based Interaction Model for Recommendation on Heterogeneous Graph"

Heterogeneous INteract and aggreGatE (GraphHINGE) This is a pytorch implementation of GraphHINGE model. This is the experiment code in the following w

Jinjiarui 69 Nov 24, 2022
A PyTorch implementation of "TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?"

TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? Source: Improving Vision Transformer Efficiency and Accuracy by Learning to Tokenize

Caiyong Wang 14 Sep 20, 2022
[CVPR'21] DeepSurfels: Learning Online Appearance Fusion

DeepSurfels: Learning Online Appearance Fusion Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission DeepSurfel

Online Reconstruction 52 Nov 14, 2022
Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras (ICCV 2021)

N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Gra

32 Dec 26, 2022
A Small and Easy approach to the BraTS2020 dataset (2D Segmentation)

BraTS2020 A Light & Scalable Solution to BraTS2020 | Medical Brain Tumor Segmentation (2D Segmentation) Developed the segmentation models for segregat

Gunjan Haldar 0 Jan 19, 2022
Object recognition using Azure Custom Vision AI and Azure Functions

Step by Step on how to create an object recognition model using Custom Vision, export the model and run the model in an Azure Function

El Bruno 11 Jul 08, 2022
PAIRED in PyTorch đŸ”„

PAIRED This codebase provides a PyTorch implementation of Protagonist Antagonist Induced Regret Environment Design (PAIRED), which was first introduce

UCL DARK Lab 46 Dec 12, 2022