PyTorch implementation for "Mining Latent Structures with Contrastive Modality Fusion for Multimedia Recommendation"

Related tags

Deep LearningMICRO
Overview

MIRCO

PyTorch implementation for paper: Latent Structures Mining with Contrastive Modality Fusion for Multimedia Recommendation

Dependencies

  • Python 3.6
  • torch==1.5.0
  • scikit-learn==0.24.2
  • torch-scatter==2.0.8

Dataset Preparation

  • Download 5-core reviews data, meta data, and image features from Amazon product dataset. Put data into the directory data/meta-data/.

  • Install sentence-transformers and download pretrained models to extract textual features. Unzip pretrained model into the directory sentence-transformers/:

    ├─ data/: 
        ├── sports/
        	├── meta-data/
        		├── image_features_Sports_and_Outdoors.b
        		├── meta-Sports_and_Outdoors.json.gz
        		├── reviews_Sports_and_Outdoors_5.json.gz
        ├── sentence-transformers/
            	├── stsb-roberta-large
    
  • Run python build_data.py to preprocess data.

  • Run python cold_start.py to build cold-start data.

  • We provide processed data Baidu Yun (access code: m37q), Google Drive.

Usage

Start training and inference as:

cd codes
python main.py --dataset {DATASET}

For cold-start settings:

python main.py --dataset {DATASET} --core 0 --verbose 1 --lr 1e-5

Citation

If you want to use our codes in your research, please cite:

@article{MICRO21,
  title     = {Latent Structures Mining with Contrastive Modality Fusion for Multimedia Recommendation},
  author    = {Zhang, Jinghao and 
               Zhu, Yanqiao and 
               Liu, Qiang and
               Zhang, Mengqi and
               Wu, Shu and 
               Wang, Liang},
  journal = {arXiv.org},
  year={2021},
  eprint={2111.00678},
  archivePrefix={arXiv},
  primaryClass={cs.IR}
}

Acknowledgement

The structure of this code is largely based on LightGCN. Thank for their work.

Owner
Big Data and Multi-modal Computing Group, CRIPAC
Big Data and Multi-modal Computing Group, Center for Research on Intelligent Perception and Computing
Big Data and Multi-modal Computing Group, CRIPAC
Improving 3D Object Detection with Channel-wise Transformer

"Improving 3D Object Detection with Channel-wise Transformer" Thanks for the OpenPCDet, this implementation of the CT3D is mainly based on the pcdet v

Hualian Sheng 107 Dec 20, 2022
GyroSPD: Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices

GyroSPD Code for the paper "Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices" accepted at NeurIPS 2021. Re

Federico Lopez 12 Dec 12, 2022
Code for our paper 'Generalized Category Discovery'

Generalized Category Discovery This repo is a placeholder for code for our paper: Generalized Category Discovery Abstract: In this paper, we consider

107 Dec 28, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

selfcontact This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] It includes the main function

Lea Müller 68 Dec 06, 2022
CRF-RNN for Semantic Image Segmentation - PyTorch version

This repository contains the official PyTorch implementation of the "CRF-RNN" semantic image segmentation method, published in the ICCV 2015

Sadeep Jayasumana 170 Dec 13, 2022
Code for reproducing experiments in "Improved Training of Wasserstein GANs"

Improved Training of Wasserstein GANs Code for reproducing experiments in "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, Tensor

Ishaan Gulrajani 2.2k Jan 01, 2023
Official git repo for the CHIRP project

CHIRP Project This is the official git repository for the CHIRP project. Pull requests are accepted here, but for the moment, the main repository is s

Dan Smith 77 Jan 08, 2023
Data visualization app for H&M competition in kaggle

handm_data_visualize_app Data visualization app by streamlit for H&M competition in kaggle. competition page: https://www.kaggle.com/competitions/h-an

Kyohei Uto 12 Apr 30, 2022
D2Go is a toolkit for efficient deep learning

D2Go D2Go is a production ready software system from FacebookResearch, which supports end-to-end model training and deployment for mobile platforms. W

Facebook Research 744 Jan 04, 2023
A library for Deep Learning Implementations and utils

deeply A Deep Learning library Table of Contents Features Quick Start Usage License Features Python 2.7+ and Python 3.4+ compatible. Quick Start $ pip

Achilles Rasquinha 1 Dec 12, 2022
Woosung Choi 63 Nov 14, 2022
Multi-angle c(q)uestion answering

Macaw Introduction Macaw (Multi-angle c(q)uestion answering) is a ready-to-use model capable of general question answering, showing robustness outside

AI2 430 Jan 04, 2023
Code for MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks

MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks This is the code for the paper: MentorNet: Learning Data-Driven Curriculum fo

Google 302 Dec 23, 2022
Visual Adversarial Imitation Learning using Variational Models (VMAIL)

Visual Adversarial Imitation Learning using Variational Models (VMAIL) This is the official implementation of the NeurIPS 2021 paper. Project website

14 Nov 18, 2022
PlaidML is a framework for making deep learning work everywhere.

A platform for making deep learning work everywhere. Documentation | Installation Instructions | Building PlaidML | Contributing | Troubleshooting | R

PlaidML 4.5k Jan 02, 2023
Data-driven reduced order modeling for nonlinear dynamical systems

SSMLearn Data-driven Reduced Order Models for Nonlinear Dynamical Systems This package perform data-driven identification of reduced order model based

Haller Group, Nonlinear Dynamics 27 Dec 13, 2022
Rohit Ingole 2 Mar 24, 2022
Code and hyperparameters for the paper "Generative Adversarial Networks"

Generative Adversarial Networks This repository contains the code and hyperparameters for the paper: "Generative Adversarial Networks." Ian J. Goodfel

Ian Goodfellow 3.5k Jan 08, 2023
Temporally Efficient Vision Transformer for Video Instance Segmentation, CVPR 2022, Oral

Temporally Efficient Vision Transformer for Video Instance Segmentation Temporally Efficient Vision Transformer for Video Instance Segmentation (CVPR

Hust Visual Learning Team 203 Dec 31, 2022
Lightweight, Python library for fast and reproducible experimentation :microscope:

Steppy What is Steppy? Steppy is a lightweight, open-source, Python 3 library for fast and reproducible experimentation. Steppy lets data scientist fo

minerva.ml 134 Jul 10, 2022