Python Package for CanvasXpress JS Visualization Tools

Overview

CanvasXpress Python Library

About CanvasXpress for Python

CanvasXpress was developed as the core visualization component for bioinformatics and systems biology analysis at Bristol-Myers Squibb. It supports a large number of visualizations to display scientific and non-scientific data. CanvasXpress also includes a simple and unobtrusive user interface to explore complex data sets, a sophisticated and unique mechanism to keep track of all user customization for Reproducible Research purposes, as well as an 'out of the box' broadcasting capability to synchronize selected data points across all CanvasXpress plots in a page. Data can be easily sorted, grouped, transposed, transformed or clustered dynamically. The fully customizable mouse events as well as the zooming, panning and drag-and-drop capabilities are features that make this library unique in its class.

CanvasXpress can be now be used within Python for native integration into IPython and Web environments, such as:

Complete examples using the CanvasXpress library including the mouse events, zooming, and broadcasting capabilities are included in this package. This CanvasXpress Python package was created by Dr. Todd C. Brett, with support from Aggregate Genius Inc., in cooperation with the CanvasXpress team.

The maintainer of the Python edition of this package is Dr. Todd C. Brett.

Project Status

Topic Status
Version and Platform Release Compatibility Implementations
Popularity PyPI - Downloads
Status docinfosci Documentation Status Coverage Status Requirements Status Activity

Enhancements

A complete list of enhancements by release date is available at the CanvasXpress for Python Status Page.

Roadmap

This package is actively maintained and developed. Our focus for 2021 is:

Immediate Focus

  • Plotly Dash integration
  • Detailed documentation and working examples of all Python functionality

General Focus

  • Embedded CanvasXpress for JS libraries (etc.) for offline work
  • Integraton with dashboard frameworks for easier applet creation
  • Continued alignment with the CanvasXpress Javascript library
  • Continued stability and security, if/as needed

Getting Started

Documentation

The documentation site contains complete examples and API documentation. There is also a wealth of additional information, including full Javascript API documentation, at https://www.canvasxpress.org.

New: Jupyter Notebook based examples for hundreds of chart configurations!

A Quick Script/Console Example

Charts can be defined in scripts or a console session and then displayed using the default browser, assuming that a graphical browser with Javascript support is available on the host system.

from canvasxpress.canvas import CanvasXpress
from canvasxpress.render.popup import CXBrowserPopup

if __name__ == "__main__":
    # Define a CX bar chart with some basic data
    chart: CanvasXpress = CanvasXpress(
        data={
            "y": {
                "vars": ["Gene1"],
                "smps": ["Smp1", "Smp2", "Smp3"],
                "data": [[10, 35, 88]]
            }
        },
        config={
            "graphType" : "Bar"
        }
    )
    
    # Display the chart in its own Web page
    browser = CXBrowserPopup(chart)
    browser.render()

Upon running the example the following chart will be displayed on systems such as MacOS X, Windows, and Linux with graphical systems:

A Quick Flask Example

Flask is a popular lean Web development framework for Python based applications. Flask applications can serve Web pages, RESTful APIs, and similar backend service concepts. This example shows how to create a basic Flask application that provides a basic Web page with a CanvasXpress chart composed using Python in the backend.

The concepts in this example equally apply to other frameworks that can serve Web pages, such as Django and Tornado.

Create a Basic Flask App

A basic Flask app provides a means by which:

  1. A local development server can be started
  2. A function can respond to a URL

First install Flask and CanvasXpress for Python:

pip install -U Flask canvasxpress

Then create a demo file, such as app.py, and insert:

# save this as app.py
from flask import Flask

app = Flask(__name__)

@app.route('/')
def canvasxpress_example():
    return "Hello!"

On the command line, execute:

flask run

And output similar to the following will be provided:

Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

Browsing to http://127.0.0.1:5000/ will result in a page with the text Hello!.

Add a Chart

CanvasXpress for Python can be used to define a chart with various attributes and then generate the necessary HTML and Javascript for proper display in the browser.

Add a templates directory to the same location as the app.py file, and inside add a file called canvasxpress_example.html. Inside the file add:

<html>
    <head>
        <meta charset="UTF-8">
        <title>Flask CanvasXpress Example</title>
        
        <!-- 2. Include the CanvasXpress library -->
        <link 
                href='https://www.canvasxpress.org/dist/canvasXpress.css' 
                rel='stylesheet' 
                type='text/css'
        />
        <script 
                src='https://www.canvasxpress.org/dist/canvasXpress.min.js' 
                type='text/javascript'>
        </script>
        
        <!-- 3. Include script to initialize object -->
        <script type="text/javascript">
            onReady(function () {
                {{canvas_source|safe}}
            })
        </script>
        
    </head>
    <body>
    
        <!-- 1. DOM element where the visualization will be displayed -->
        {{canvas_element|safe}}
    
    </body>
</html>

The HTML file, which uses Jinja syntax achieves three things:

  1. Provides a location for a <div> element that marks where the chart will be placed.
  2. References the CanvasXpress CSS and JS files needed to illustrate and operate the charts.
  3. Provides a location for the Javascript that will replace the chart <div> with a working element on page load.

Going back to our Flask app, we can add a basic chart definition with some data to our example function:

from flask import Flask, render_template
from canvasxpress.canvas import CanvasXpress

app = Flask(__name__)

@app.route('/')
def canvasxpress_example():
    # Define a CX bar chart with some basic data
    chart: CanvasXpress = CanvasXpress(
        data={
            "y": {
                "vars": ["Gene1"],
                "smps": ["Smp1", "Smp2", "Smp3"],
                "data": [[10, 35, 88]]
            }
        },
        config={
            "graphType" : "Bar"
        }
    )

    # Get the HTML parts for use in our Web page:
    html_parts: dict = chart.render_to_html_parts()

    # Return a Web page based on canvasxpress_example.html and our HTML parts
    return render_template(
        "canvasxpress_example.html",
        canvas_element=html_parts["cx_canvas"],
        canvas_source=html_parts["cx_js"]
    )

Rerun the flask app on the command line and browse to the indicated IP and URL. A page similar to the following will be displayed:

Congratulations! You have created your first Python-driven CanvasXpress app!

Owner
Dr. Todd C. Brett
COO & Information Scientist at Aggregate Genius, Inc.
Dr. Todd C. Brett
Functions for easily making publication-quality figures with matplotlib.

Data-viz utils 📈 Functions for data visualization in matplotlib 📚 API Can be installed using pip install dvu and then imported with import dvu. You

Chandan Singh 16 Sep 15, 2022
Bioinformatics tool for exploring RNA-Protein interactions

Explore RNA-Protein interactions. RNPFind is a bioinformatics tool. It takes an RNA transcript as input and gives a list of RNA binding protein (RBP)

Nahin Khan 3 Jan 27, 2022
A python visualization of the A* path finding algorithm

A python visualization of the A* path finding algorithm. It allows you to pick your start, end location and make obstacles and then view the process of finding the shortest path. You can also choose

Kimeon 4 Aug 02, 2022
Data Visualizations for the #30DayChartChallenge

The #30DayChartChallenge This repository contains all the charts made for the #30DayChartChallenge during the month of April. This project aims to exp

Isaac Arroyo 7 Sep 20, 2022
HW 2: Visualizing interesting datasets

HW 2: Visualizing interesting datasets Check out the project instructions here! Mean Earnings per Hour for Males and Females My first graph uses data

7 Oct 27, 2021
Area-weighted venn-diagrams for Python/matplotlib

Venn diagram plotting routines for Python/Matplotlib Routines for plotting area-weighted two- and three-circle venn diagrams. Installation The simples

Konstantin Tretyakov 400 Dec 31, 2022
This Crash Course will cover all you need to know to start using Plotly in your projects.

Plotly Crash Course This course was designed to help you get started using Plotly. If you ever felt like your data visualization skills could use an u

Fábio Neves 2 Aug 21, 2022
Python scripts for plotting audiograms and related data from Interacoustics Equinox audiometer and Otoaccess software.

audiometry Python scripts for plotting audiograms and related data from Interacoustics Equinox 2.0 audiometer and Otoaccess software. Maybe similar sc

Hamilton Lab at UT Austin 2 Jun 15, 2022
Altair extension for saving charts in a variety of formats.

Altair Saver This packge provides extensions to Altair for saving charts to a variety of output types. Supported output formats are: .json/.vl.json: V

Altair 85 Dec 09, 2022
Interactive plotting for Pandas using Vega-Lite

pdvega: Vega-Lite plotting for Pandas Dataframes pdvega is a library that allows you to quickly create interactive Vega-Lite plots from Pandas datafra

Altair 342 Oct 26, 2022
Colormaps for astronomers

cmastro: colormaps for astronomers 🔭 This package contains custom colormaps that have been used in various astronomical applications, similar to cmoc

Adrian Price-Whelan 12 Oct 11, 2022
Debugging, monitoring and visualization for Python Machine Learning and Data Science

Welcome to TensorWatch TensorWatch is a debugging and visualization tool designed for data science, deep learning and reinforcement learning from Micr

Microsoft 3.3k Dec 27, 2022
The visual framework is designed on the idea of module and implemented by mixin method

Visual Framework The visual framework is designed on the idea of module and implemented by mixin method. Its biggest feature is the mixins module whic

LEFTeyes 9 Sep 19, 2022
With Holoviews, your data visualizes itself.

HoloViews Stop plotting your data - annotate your data and let it visualize itself. HoloViews is an open-source Python library designed to make data a

HoloViz 2.3k Jan 04, 2023
在原神中使用围栏绘图

yuanshen_draw 在原神中使用围栏绘图 文件说明 toLines.py 将一张图片转换为对应的线条集合,视频可以按帧转换。 draw.py 在原神家园里绘制一张线条图。 draw_video.py 在原神家园里绘制视频(自动按帧摆放,截图(win)并回收) cat_to_video.py

14 Oct 08, 2022
Apache Superset is a Data Visualization and Data Exploration Platform

Superset A modern, enterprise-ready business intelligence web application. Why Superset? | Supported Databases | Installation and Configuration | Rele

The Apache Software Foundation 50k Jan 06, 2023
A high performance implementation of HDBSCAN clustering. http://hdbscan.readthedocs.io/en/latest/

HDBSCAN Now a part of scikit-learn-contrib HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over va

Leland McInnes 91 Dec 29, 2022
Collection of scripts for making high quality beautiful math-related posters.

Poster Collection of scripts for making high quality beautiful math-related posters. The poster can have as large printing size as 3x2 square feet wit

Nattawut Phetmak 3 Jun 09, 2022
PanGraphViewer -- show panenome graph in an easy way

PanGraphViewer -- show panenome graph in an easy way Table of Contents Versions and dependences Desktop-based panGraphViewer Library installation for

16 Dec 17, 2022
Custom Plotly Dash components based on Mantine React Components library

Dash Mantine Components Dash Mantine Components is a Dash component library based on Mantine React Components Library. It makes it easier to create go

Snehil Vijay 239 Jan 08, 2023