Official PyTorch implementation and pretrained models of the paper Self-Supervised Classification Network

Overview

Self-Classifier: Self-Supervised Classification Network

Official PyTorch implementation and pretrained models of the paper Self-Supervised Classification Network. Self-Classifier is a self-supervised end-to-end classification neural network. It learns labels and representations simultaneously in a single-stage end-to-end manner.

Self-Classifier architecture. Two augmented views of the same image are processed by a shared network. The cross-entropy of the two views is minimized to promote same class prediction while avoiding degenerate solutions by asserting a uniform prior. The resulting model learns representations and class labels in a single-stage end-to-end unsupervised manner. CNN: Convolutional Neural Network; FC: Fully Connected.

Setup

  1. Install Conda environment:

     conda env create -f ./environment.yml
    
  2. Install Apex with CUDA extension:

     export TORCH_CUDA_ARCH_LIST="7.0"  # see https://en.wikipedia.org/wiki/CUDA#GPUs_supported
     pip install git+git://github.com/NVIDIA/[email protected] --install-option="--cuda_ext"         
    

Training & Evaluation

Distributed training & evaluation is available via Slurm. See SBATCH scripts here.

IMPORTANT: set DATASET_PATH, EXPERIMENT_PATH and PRETRAINED_PATH to match your local paths.

Training

For training self-classifier on 4 nodes of 4 GPUs each for 800 epochs run:

    sbatch ./scripts/train.sh

Evaluation

Image Classification with Linear Models

For training a supervised linear classifier on a frozen backbone, run:

    sbatch ./scripts/eval.sh

Unsupervised Image Classification

For computing unsupervised image classification metrics (NMI: Normalized Mutual Information, AMI: Adjusted Normalized Mutual Information and ARI: Adjusted Rand-Index) and generating qualitative examples, run:

    sbatch ./scripts/cls_eval.sh

Image Classification with kNN

For running K-nearest neighbor classifier on ImageNet validation set, run:

    sbatch ./scripts/knn_eval.sh

Ablation study

For training the 100-epoch ablation study baseline, run:

    sbatch ./scripts/ablation/train_100ep.sh

For training any of the ablation study runs presented in the paper, run:

    sbatch ./scripts/ablation//.sh

Pretrained Models

Download pretrained 100/800 epochs models here.

Qualitative Examples (classes predicted by Self-Classifier on ImageNet validation set)

Low entropy classes predicted by Self-Classifier on ImageNet validation set. Images are sampled randomly from each predicted class. Note that the predicted classes capture a large variety of different backgrounds and viewpoints.

To reproduce qualitative examples, run:

    sbatch ./scripts/cls_eval.sh

License

See the LICENSE file for more details.

Citation

If you find this repository useful in your research, please cite:

@article{amrani2021self,
  title={Self-Supervised Classification Network},
  author={Amrani, Elad and Bronstein, Alex},
  journal={arXiv preprint arXiv:2103.10994},
  year={2021}
}
Owner
Elad Amrani
Machine Learning (EE) MSc Student at Technion
Elad Amrani
Self-Supervised Pillar Motion Learning for Autonomous Driving (CVPR 2021)

Self-Supervised Pillar Motion Learning for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Self-Supervised Pillar Motion Learning for Autono

QCraft 101 Dec 05, 2022
Weakly- and Semi-Supervised Panoptic Segmentation (ECCV18)

Weakly- and Semi-Supervised Panoptic Segmentation by Qizhu Li*, Anurag Arnab*, Philip H.S. Torr This repository demonstrates the weakly supervised gro

Qizhu Li 159 Dec 20, 2022
Event sourced bank - A wide-and-shallow example using the Python event sourcing library

Event Sourced Bank A "wide but shallow" example of using the Python event sourci

3 Mar 09, 2022
Official PyTorch implementation of RobustNet (CVPR 2021 Oral)

RobustNet (CVPR 2021 Oral): Official Project Webpage Codes and pretrained models will be released soon. This repository provides the official PyTorch

Sungha Choi 173 Dec 21, 2022
PyArmadillo: an alternative approach to linear algebra in Python

PyArmadillo is a linear algebra library for the Python language, with an emphasis on ease of use.

Terry Zhuo 58 Oct 11, 2022
A library for graph deep learning research

Documentation | Paper [JMLR] | Tutorials | Benchmarks | Examples DIG: Dive into Graphs is a turnkey library for graph deep learning research. Why DIG?

DIVE Lab, Texas A&M University 1.3k Jan 01, 2023
ISBI 2022: Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image.

Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image Introduction This repository contains the PyTorch implem

25 Nov 09, 2022
Code for paper [ACE: Ally Complementary Experts for Solving Long-Tailed Recognition in One-Shot] (ICCV 2021, oral))

ACE: Ally Complementary Experts for Solving Long-Tailed Recognition in One-Shot This repository is the official PyTorch implementation of ICCV-21 pape

Jiarui 21 May 09, 2022
Arabic Car License Recognition. A solution to the kaggle competition Machathon 3.0.

Transformers Arabic licence plate recognition 🚗 Solution to the kaggle competition Machathon 3.0. Ranked in the top 6️⃣ at the final evaluation phase

Noran Hany 17 Dec 04, 2022
【steal piano】GitHub偷情分析工具!

【steal piano】GitHub偷情分析工具! 你是否有这样的困扰,有一天你的仓库被很多人加了star,但是你却不知道这些人都是从哪来的? 别担心,GitHub偷情分析工具帮你轻松解决问题! 原理 GitHub偷情分析工具透过分析star的时间以及他们之间的follow关系,可以推测出每个st

黄巍 442 Dec 21, 2022
RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

184 Jan 04, 2023
WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking

WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking [Paper Link] Abstract In this work, we contribute a new million-scale Un

25 Jan 01, 2023
A PyTorch Library for Accelerating 3D Deep Learning Research

Kaolin: A Pytorch Library for Accelerating 3D Deep Learning Research Overview NVIDIA Kaolin library provides a PyTorch API for working with a variety

NVIDIA GameWorks 3.5k Jan 07, 2023
AgML is a comprehensive library for agricultural machine learning

AgML is a comprehensive library for agricultural machine learning. Currently, AgML provides access to a wealth of public agricultural datasets for common agricultural deep learning tasks.

Plant AI and Biophysics Lab 1 Jul 07, 2022
Bib-parser - Convenient script to parse .bib files with the ACM Digital Library like metadata

Bib Parser Convenient script to parse .bib files with the ACM Digital Library li

Mehtab Iqbal (Shahan) 1 Jan 26, 2022
tinykernel - A minimal Python kernel so you can run Python in your Python

tinykernel - A minimal Python kernel so you can run Python in your Python

fast.ai 37 Dec 02, 2022
Listing arxiv - Personalized list of today's articles from ArXiv

Personalized list of today's articles from ArXiv Print and/or send to your gmail

Lilianne Nakazono 5 Jun 17, 2022
Pyramid Pooling Transformer for Scene Understanding

Pyramid Pooling Transformer for Scene Understanding Requirements: torch 1.6+ torchvision 0.7.0 timm==0.3.2 Validated on torch 1.6.0, torchvision 0.7.0

Yu-Huan Wu 119 Dec 29, 2022
Quantized tflite models for ailia TFLite Runtime

ailia-models-tflite Quantized tflite models for ailia TFLite Runtime About ailia TFLite Runtime ailia TF Lite Runtime is a TensorFlow Lite compatible

ax Inc. 13 Dec 23, 2022
PGPortfolio: Policy Gradient Portfolio, the source code of "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem"(https://arxiv.org/pdf/1706.10059.pdf).

This is the original implementation of our paper, A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem (arXiv:1706.1

Zhengyao Jiang 1.5k Dec 29, 2022