Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning

Overview

Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning

This repository is official Tensorflow implementation of paper:

Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning [paper link]

and Tensorflow 2 example code for
   "Custom layers", "Custom training loop", "XLA (JIT)-compiling", "Distributed learing", and "Gradients accumulator".

Paper abstract

Conventional NAS-based pruning algorithms aim to find the sub-network with the best validation performance. However, validation performance does not successfully represent test performance, i.e., potential performance. Also, although fine-tuning the pruned network to restore the performance drop is an inevitable process, few studies have handled this issue. This paper proposes a novel sub-network search and fine-tuning method, i.e., Ensemble Knowledge Guidance (EKG). First, we experimentally prove that the fluctuation of the loss landscape is an effective metric to evaluate the potential performance. In order to search a sub-network with the smoothest loss landscape at a low cost, we propose a pseudo-supernet built by an ensemble sub-network knowledge distillation. Next, we propose a novel fine-tuning that re-uses the information of the search phase. We store the interim sub-networks, that is, the by-products of the search phase, and transfer their knowledge into the pruned network. Note that EKG is easy to be plugged-in and computationally efficient. For example, in the case of ResNet-50, about 45% of FLOPS is removed without any performance drop in only 315 GPU hours.


Conceptual visualization of the goal of the proposed method.

Contribution points and key features

  • As a new tool to measure the potential performance of sub-network in NAS-based pruning, the smoothness of the loss landscape is presented. Also, the experimental evidence that the loss landscape fluctuation has a higher correlation with the test performance than the validation performance is provided.
  • The pseudo-supernet based on an ensemble sub-network knowledge distillation is proposed to find a sub-network of smoother loss landscape without increasing complexity. It helps NAS-based pruning to prune all pre-trained networks, and also allows to find optimal sub-network(s) more accurately.
  • To our knowledge, this paper provides the world-first approach to store the information of the search phase in a memory bank and to reuse it in the fine-tuning phase of the pruned network. The proposed memory bank contributes to greatly improving the performance of the pruned network.

Requirement

  • Tensorflow >= 2.7 (I have tested on 2.7-2.8)
  • Pickle
  • tqdm

How to run

  1. Move to the codebase.
  2. Train and evaluate our model by the below command.
  # ResNet-56 on CIFAR10
  python train_cifar.py --gpu_id 0 --arch ResNet-56 --dataset CIFAR10 --search_target_rate 0.45 --train_path ../test
  python test.py --gpu_id 0 --arch ResNet-56 --dataset CIFAR10 --trained_param ../test/trained_param.pkl

Experimental results


(Left) Potential performance vs. validation loss (right) Potential performance vs. condition number. 50 sub-networks of ResNet-56 trained on CIFAR10 were used for this experiment. accurately.


Visualization of loss landscapes of sub-networks searched by various filter importance scoring algorithms.

Comparison with various pruning techniques for ResNet family trained on ImageNet.


Performance analysis in case of ResNet-50 trained on ImageNet-2012. The left plot is the FLOPs reduction rate-Top-1 accuracy, and the right plot is the GPU hours-Top-1 accuracy.

Reference

@article{lee2022ensemble,
  title        = {Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning},
  author       = {Seunghyun Lee, Byung Cheol Song},
  year         = 2022,
  journal      = {arXiv preprint arXiv:2203.02651}
}

Owner
Seunghyun Lee
Knowledge distillation; Neural network light-weighting; Tensorflow
Seunghyun Lee
Learning-Augmented Dynamic Power Management

Learning-Augmented Dynamic Power Management This repository contains source code accompanying paper Learning-Augmented Dynamic Power Management with M

Adam 0 Feb 22, 2022
Deeper insights into graph convolutional networks for semi-supervised learning

deeper_insights_into_GCNs Deeper insights into graph convolutional networks for semi-supervised learning References data and utils.py come from Implem

Davidham3 17 Dec 16, 2022
This is an implementation of Googles Yogi-Optimizer in Keras (tf.keras)

Yogi-Optimizer_Keras This is an implementation of Googles Yogi-Optimizer in Keras (tf.keras) The NeurIPS-Paper can be found here: http://papers.nips.c

14 Sep 13, 2022
Direct LiDAR Odometry: Fast Localization with Dense Point Clouds

Direct LiDAR Odometry: Fast Localization with Dense Point Clouds DLO is a lightweight and computationally-efficient frontend LiDAR odometry solution w

VECTR at UCLA 369 Dec 30, 2022
Demo project for real time anomaly detection using kafka and python

kafkaml-anomaly-detection Project for real time anomaly detection using kafka and python It's assumed that zookeeper and kafka are running in the loca

Rodrigo Arenas 36 Dec 12, 2022
Demo notebooks for Qiskit application modules demo sessions (Oct 8 & 15):

qiskit-application-modules-demo-sessions This repo hosts demo notebooks for the Qiskit application modules demo sessions hosted on Qiskit YouTube. Par

Qiskit Community 46 Nov 24, 2022
Deep learning model, heat map, data prepo

deep learning model, heat map, data prepo

Pamela Dekas 1 Jan 14, 2022
Real-time Object Detection for Streaming Perception, CVPR 2022

StreamYOLO Real-time Object Detection for Streaming Perception Jinrong Yang, Songtao Liu, Zeming Li, Xiaoping Li, Sun Jian Real-time Object Detection

Jinrong Yang 237 Dec 27, 2022
Neural HMMs are all you need (for high-quality attention-free TTS)

Neural HMMs are all you need (for high-quality attention-free TTS) Shivam Mehta, Éva Székely, Jonas Beskow, and Gustav Eje Henter This is the official

Shivam Mehta 0 Oct 28, 2022
Code for "Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance" at NeurIPS 2021

Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance Justin Lim, Christina X Ji, Michael Oberst, Saul Blecker, Leor

Sontag Lab 3 Feb 03, 2022
Python implementation of "Elliptic Fourier Features of a Closed Contour"

PyEFD An Python/NumPy implementation of a method for approximating a contour with a Fourier series, as described in [1]. Installation pip install pyef

Henrik Blidh 71 Dec 09, 2022
This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation

This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation (Guillaume Couairon, Holger

Meta Research 31 Oct 17, 2022
Python scripts for performing stereo depth estimation using the HITNET Tensorflow model.

HITNET-Stereo-Depth-estimation Python scripts for performing stereo depth estimation using the HITNET Tensorflow model from Google Research. Stereo de

Ibai Gorordo 76 Jan 02, 2023
Official implementation of "Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation" (RSS 2022)

Intro Official implementation of "Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation" Robotics:Science and

Yunho Kim 21 Dec 07, 2022
Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021)

L1-Refinement Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021) 🙈 A more detailed readme is co

Lincedo Lab 4 Jun 09, 2021
Ensembling Off-the-shelf Models for GAN Training

Data-Efficient GANs with DiffAugment project | paper | datasets | video | slides Generated using only 100 images of Obama, grumpy cats, pandas, the Br

MIT HAN Lab 1.2k Dec 26, 2022
Simple image captioning model - CLIP prefix captioning.

Simple image captioning model - CLIP prefix captioning.

688 Jan 04, 2023
Funnels: Exact maximum likelihood with dimensionality reduction.

Funnels This repository contains the code needed to reproduce the experiments from the paper: Funnels: Exact maximum likelihood with dimensionality re

2 Apr 21, 2022
Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

66 Dec 15, 2022
Self-attentive task GAN for space domain awareness data augmentation.

SATGAN TODO: update the article URL once published. Article about this implemention The self-attentive task generative adversarial network (SATGAN) le

Nathan 2 Mar 24, 2022