Official PyTorch implementation of "Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning" (ICCV2021 Oral)

Overview

MeTAL - Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning (ICCV2021 Oral)

Sungyong Baik, Janghoon Choi, Heewon Kim, Dohee Cho, Jaesik Min, Kyoung Mu Lee

Official PyTorch implementation of Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning (ICCV2021 Oral)

The code is based off the public code of MAML++, where their reimplementation of MAML is used as the baseline. The code also includes the implementation of ALFA.

[Paper-arXiv] [Video]

Requirements

Ubuntu 18.04

  • Anaconda3
  • Python==3.7.10
  • PyTorch==1.4
  • numpy==1.19.2

To install requirements, first download Anaconda3 and then run the following:

conda create -n metal python=3.7.10
conda activate metal
bash install.sh

Datasets

For miniIamgenet, the dataset can be downloaded from the link provided from MAML++ public code. make a directory named 'datasets' and place the downloaded miniImagnet under the 'datasets' directory.

Training

To train a model, run the following command in experiments_scripts directory

bash MeTAL.sh $GPU_ID

Evaluation

After training is finished, evaluation is performed automatically. To run an evaluation manually, run the same command

bash MeTAL.sh $GPU_ID

Results

Model Backbone 1-shot Accuracy 5-shot Accuracy
MAML 4-CONV 49.64 ± 0.31% 64.99 ± 0.27%
MeTAL 4-CONV 52.63 ± 0.37% 70.52 ± 0.29%
ALFA+MAML 4-CONV 50.58 ± 0.51% 69.12 ± 0.47%
ALFA+MeTAL 4-CONV 57.75 ± 0.38% 74.10 ± 0.43%
MAML ResNet12 58.60 ± 0.42% 69.54 ± 0.38%
MeTAL ResNet12 59.64 ± 0.38% 76.20 ± 0.19%
ALFA+MAML ResNet12 59.74 ± 0.49% 77.96 ± 0.41%
ALFA+MeTAL ResNet12 66.61 ± 0.28% 81.43 ± 0.29%

Reference

@InProceedings{baik2021meta,
 title={Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning},
 author={Sungyong Baik, Janghoon Choi, Heewon Kim, Dohee Cho, Jaesik Min, Kyoung Mu Lee}
 booktitle = {International Conference on Computer Vision (ICCV)}, 
 year={2021}
}
Owner
Sungyong Baik
Ph.D. Student in CVLab, SNU
Sungyong Baik
Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics

[AAAI2022] Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics Overall pipeline of OCN. Paper Link: [arXiv] [AAAI

13 Nov 21, 2022
LexGLUE: A Benchmark Dataset for Legal Language Understanding in English

LexGLUE: A Benchmark Dataset for Legal Language Understanding in English ⚖️ 🏆 🧑‍🎓 👩‍⚖️ Dataset Summary Inspired by the recent widespread use of th

95 Dec 08, 2022
This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21

Deep Virtual Markers This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21 Getting Started Get sa

KimHyomin 45 Oct 07, 2022
VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition

VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition Usage First, install PyTorch 1.7.1+, torchvision 0.8.2

40 Dec 12, 2022
PyTorch code for JEREX: Joint Entity-Level Relation Extractor

JEREX: "Joint Entity-Level Relation Extractor" PyTorch code for JEREX: "Joint Entity-Level Relation Extractor". For a description of the model and exp

LAVIS - NLP Working Group 50 Dec 01, 2022
Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Meng Liu 2 Jul 19, 2022
Tutorials and implementations for "Self-normalizing networks"

Self-Normalizing Networks Tutorials and implementations for "Self-normalizing networks"(SNNs) as suggested by Klambauer et al. (arXiv pre-print). Vers

Institute of Bioinformatics, Johannes Kepler University Linz 1.6k Jan 07, 2023
Scales, Chords, and Cadences: Practical Music Theory for MIR Researchers

ISMIR-musicTheoryTutorial This repository has slides and Jupyter notebooks for the ISMIR 2021 tutorial Scales, Chords, and Cadences: Practical Music T

Johanna Devaney 58 Oct 11, 2022
Simple cross-platform application for DaVinci surgical video frame annotation

About DaVid is a simple cross-platform GUI for annotating robotic and endoscopic surgical actions for use in deep-learning research. Features Simple a

Cyril Zakka 4 Oct 09, 2021
Perspective: Julia for Biologists

Perspective: Julia for Biologists 1. Examples Speed: Example 1 - Single cell data and network inference Domain: Single cell data Methodology: Network

Elisabeth Roesch 55 Dec 02, 2022
Official implementation of "Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks", NeurIPS 2021.

PHDimGeneralization Official implementation of "Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks", NeurIPS 2021. Overvie

Tolga Birdal 13 Nov 08, 2022
A module for solving and visualizing Schrödinger equation.

qmsolve This is an attempt at making a solid, easy to use solver, capable of solving and visualize the Schrödinger equation for multiple particles, an

506 Dec 28, 2022
Final term project for Bayesian Machine Learning Lecture (XAI-623)

Mixquality_AL Final Term Project For Bayesian Machine Learning Lecture (XAI-623) Youtube Link The presentation is given in YoutubeLink Problem Formula

JeongEun Park 3 Jan 18, 2022
Asterisk is a framework to generate high-quality training datasets at scale

Asterisk is a framework to generate high-quality training datasets at scale

Mona Nashaat 44 Apr 25, 2022
The Pytorch implementation for "Video-Text Pre-training with Learned Regions"

Region_Learner The Pytorch implementation for "Video-Text Pre-training with Learned Regions" (arxiv) We are still cleaning up the code further and pre

Rui Yan 0 Mar 20, 2022
Official repository for CVPR21 paper "Deep Stable Learning for Out-Of-Distribution Generalization".

StableNet StableNet is a deep stable learning method for out-of-distribution generalization. This is the official repo for CVPR21 paper "Deep Stable L

120 Dec 28, 2022
Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Sidd Karamcheti 50 Nov 16, 2022
Embeddinghub is a database built for machine learning embeddings.

Embeddinghub is a database built for machine learning embeddings.

Featureform 1.2k Jan 01, 2023
Code for the IJCAI 2021 paper "Structure Guided Lane Detection"

SGNet Project for the IJCAI 2021 paper "Structure Guided Lane Detection" Abstract Recently, lane detection has made great progress with the rapid deve

Jinming Su 27 Dec 08, 2022
HugsVision is a easy to use huggingface wrapper for state-of-the-art computer vision

HugsVision is an open-source and easy to use all-in-one huggingface wrapper for computer vision. The goal is to create a fast, flexible and user-frien

Labrak Yanis 166 Nov 27, 2022