a Lightweight library for sequential learning agents, including reinforcement learning

Related tags

Deep Learningsalina
Overview

SaLinA: SaLinA - A Flexible and Simple Library for Learning Sequential Agents (including Reinforcement Learning)

TL;DR

salina is a lightweight library extending PyTorch modules for developping sequential decision models. It can be used for Reinforcement Learning (including model-based with differentiable environments, multi-agent RL, ...), but also in a supervised/unsupervised learning settings (for instance for NLP, Computer Vision, etc..).

  • It allows to write very complex sequential models (or policies) in few lines
  • It works on multiple CPUs and GPUs

Quick Start

  • Just clone the repo

Documentation

For development, set up pre-commit hooks:

  • Run pip install pre-commit
    • or conda install -c conda-forge pre-commit
    • or brew install pre-commit
  • In the top directory of the repo, run pre-commit install to set up the git hook scripts
  • Now pre-commit will run automatically on git commit!
  • Currently isort, black and blacken-docs are used, in that order

Organization of the repo

Dependencies

salina is making use of pytorch, hydra for configuring experiments, and of gym for reinforcement learning algorithms.

Note on the Logger

We provide a simple Logger that logs in both tensorboard format, but also as pickle files that can be re-read to make tables and figures. See logger. This logger can be easily replaced by any other logger.

Description

Sequential Decision Making is much more than Reinforcement learning

  • Sequential Decision Making is about interactions:
  • Interaction with data (e.g attention-models, decision tree, cascade models, active sensing, active learning, recommendation, etc….)
  • Interaction with an environment (e.g games, control)
  • Interaction with humans (e.g recommender systems, dialog systems, health systems, …)
  • Interaction with a model of the world (e.g simulation)
  • Interaction between multiple entities (e.g multi-agent RL)

What salina is

  • A sandbox for developping sequential models at scale.

  • A small (300 hundred lines) 'core' code that defines everything you will use to implement agents involved in sequential decision learning systems.

    • It is easy to understand and to use since it keeps the main principles of pytorch, just extending nn.Module to Agent that handle tthe temporal dimension.

A set of agents that can be combined (like pytorch modules) to obtain complex behaviors

  • A set of references implementations and examples in different domains Reinforcement learning, Imitation Learning, Computer Vision, ... (more to come..)

What salina is not

  • Yet another reinforcement learning framework: salina is focused on sequential decision making in general. It can be used for RL (which is our main current use-case), but also for supervised learning, attention models, multi-agent learning, planning, control, cascade models, recommender systems,...
  • A library: salina is just a small layer on top of pytorch that encourages good practices for implementing sequential models. It thus very simple to understand and to use, but very powerful.

Citing salina

Please use this bibtex if you want to cite this repository in your publications:

Link to the paper: SaLinA: Sequential Learning of Agents

    @misc{salina,
        author = {Ludovic Denoyer, Alfredo de la Fuente, Song Duong, Jean-Baptiste Gaya, Pierre-Alexandre Kamienny, Daniel H. Thompson},
        title = {SaLinA: Sequential Learning of Agents},
        year = {2021},
        publisher = {Arxiv},
        howpublished = {\url{https://gitHub.com/facebookresearch/salina}},
    }

Papers using SaLinA:

  • Learning a subspace of policies for online adaptation in Reinforcement Learning. Jean-Baptiste Gaya, Laure Soulier, Ludovic Denoyer - Arxiv

License

salina is released under the MIT license. See LICENSE for additional details about it. See also our Terms of Use and Privacy Policy.

Owner
Facebook Research
Facebook Research
Lenia - Mathematical Life Forms

For full version list, see Timeline in Lenia portal [2020-10-13] Update Python version with multi-kernel and multi-channel extensions (v3.4 LeniaNDK.p

Bert Chan 3.1k Dec 28, 2022
FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control

FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control by Dimitri von Rütte, Luca Biggio, Yannic Kilcher, Thomas Hofmann FIGARO: Generat

Dimitri 83 Jan 07, 2023
My freqtrade strategies

My freqtrade-strategies Hi there! This is repo for my freqtrade-strategies. My name is Ilya Zelenchuk, I'm a lecturer at the SPbU university (https://

171 Dec 05, 2022
CondenseNet: Light weighted CNN for mobile devices

CondenseNets This repository contains the code (in PyTorch) for "CondenseNet: An Efficient DenseNet using Learned Group Convolutions" paper by Gao Hua

Shichen Liu 690 Nov 30, 2022
Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology (LMRL Workshop, NeurIPS 2021)

Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology Self-Supervised Vision Transformers Learn Visual Concepts in Histopatholog

Richard Chen 95 Dec 24, 2022
Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

FPT_data_centric_competition - Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

Pham Viet Hoang (Harry) 2 Oct 30, 2022
Nightmare-Writeup - Writeup for the Nightmare CTF Challenge from 2022 DiceCTF

Nightmare: One Byte to ROP // Alternate Solution TLDR: One byte write, no leak.

1 Feb 17, 2022
Mouse Brain in the Model Zoo

Deep Neural Mouse Brain Modeling This is the repository for the ongoing deep neural mouse modeling project, an attempt to characterize the representat

Colin Conwell 15 Aug 22, 2022
A library for finding knowledge neurons in pretrained transformer models.

knowledge-neurons An open source repository replicating the 2021 paper Knowledge Neurons in Pretrained Transformers by Dai et al., and extending the t

EleutherAI 96 Dec 21, 2022
Multiple Object Extraction from Aerial Imagery with Convolutional Neural Networks

This is an implementation of Volodymyr Mnih's dissertation methods on his Massachusetts road & building dataset and my original methods that are publi

Shunta Saito 255 Sep 07, 2022
Explanatory Learning: Beyond Empiricism in Neural Networks

Explanatory Learning This is the official repository for "Explanatory Learning: Beyond Empiricism in Neural Networks". Datasets Download the datasets

GLADIA Research Group 10 Dec 06, 2022
ELSED: Enhanced Line SEgment Drawing

ELSED: Enhanced Line SEgment Drawing This repository contains the source code of ELSED: Enhanced Line SEgment Drawing the fastest line segment detecto

Iago Suárez 125 Dec 31, 2022
Collect super-resolution related papers, data, repositories

Collect super-resolution related papers, data, repositories

WangChaofeng 1.7k Jan 03, 2023
Benchmarks for the Optimal Power Flow Problem

Power Grid Lib - Optimal Power Flow This benchmark library is curated and maintained by the IEEE PES Task Force on Benchmarks for Validation of Emergi

A Library of IEEE PES Power Grid Benchmarks 207 Dec 08, 2022
Code image classification of MNIST dataset using different architectures: simple linear NN, autoencoder, and highway network

Deep Learning for image classification pip install -r http://webia.lip6.fr/~baskiotisn/requirements-amal.txt Train an autoencoder python3 train_auto

Hector Kohler 0 Mar 30, 2022
Automatic tool focused on deriving metallicities of open clusters

metalcode Automatic tool focused on deriving metallicities of open clusters. Based on the method described in Pöhnl & Paunzen (2010, https://ui.adsabs

2 Dec 13, 2021
Trainable PyTorch reproduction of AlphaFold 2

OpenFold A faithful PyTorch reproduction of DeepMind's AlphaFold 2. Features OpenFold carefully reproduces (almost) all of the features of the origina

AQ Laboratory 1.7k Dec 29, 2022
Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via Generalized Straight-Through Estimation. In CVPR 2022.

Nonuniform-to-Uniform Quantization This repository contains the training code of N2UQ introduced in our CVPR 2022 paper: "Nonuniform-to-Uniform Quanti

Zechun Liu 60 Dec 28, 2022
Nvidia Semantic Segmentation monorepo

Paper | YouTube | Cityscapes Score Pytorch implementation of our paper Hierarchical Multi-Scale Attention for Semantic Segmentation. Please refer to t

NVIDIA Corporation 1.6k Jan 04, 2023
Personal project about genus-0 meshes, spherical harmonics and a cow

How to transform a cow into spherical harmonics ? Spot the cow, from Keenan Crane's blog Context In the field of Deep Learning, training on images or

3 Aug 22, 2022