CONditionals for Ordinal Regression and classification in tensorflow

Overview

Condor Ordinal regression in Tensorflow Keras

Continuous Integration License Python 3

Tensorflow Keras implementation of CONDOR Ordinal Regression (aka ordinal classification) by Garrett Jenkinson et al (2021).

CONDOR is compatible with any state-of-the-art deep neural network architecture, requiring only modification of the output layer, the labels, and the loss function. Read our full documentation to learn more.

We also have implemented CONDOR for pytorch.

This package includes:

  • Ordinal tensorflow loss function: CondorOrdinalCrossEntropy
  • Ordinal tensorflow error metric: OrdinalMeanAbsoluteError
  • Ordinal tensorflow error metric: OrdinalEarthMoversDistance
  • Ordinal tensorflow sparse loss function: CondorSparseOrdinalCrossEntropy
  • Ordinal tensorflow sparse error metric: SparseOrdinalMeanAbsoluteError
  • Ordinal tensorflow sparse error metric: SparseOrdinalEarthMoversDistance
  • Ordinal tensorflow activation function: ordinal_softmax
  • Ordinal sklearn label encoder: CondorOrdinalEncoder

Installation

Install the stable version via pip:

pip install condor-tensorflow

Alternatively install the most recent code on GitHub via pip:

pip install git+https://github.com/GarrettJenkinson/condor_tensorflow/

condor_tensorflow should now be available for use as a Python library.

Docker container

As an alternative to the above, we provide a convenient Dockerfile that will build a container with condor_tensorflow along with all of its dependencies (Python 3.6+, Tensorflow 2.2+, sklearn, numpy). This can be used as follows:

# Clone this git repository
git clone https://github.com/GarrettJenkinson/condor_tensorflow/

# Change directory to the cloned repository root
cd condor_tensorflow

# Create a docker image
docker build -t cpu_tensorflow -f cpu.Dockerfile ./

# run image to serve a jupyter notebook 
docker run -it -p 8888:8888 --rm cpu_tensorflow

# how to run bash inside container (with Python that will have required dependencies available)
docker run -u $(id -u):$(id -g) -it -p 8888:8888 --rm cpu_tensorflow bash

Assuming a GPU enabled machine with NVIDIA drivers installed replace cpu above with gpu.

Example

This is a quick example to show basic model implementation syntax.
Example assumes existence of input data (variable 'X') and ordinal labels (variable 'labels').

import tensorflow as tf
import condor_tensorflow as condor
NUM_CLASSES = 5
# Ordinal 'labels' variable has 5 labels, 0 through 4.
enc_labs = condor.CondorOrdinalEncoder(nclasses=NUM_CLASSES).fit_transform(labels)
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(32, activation = "relu"))
model.add(tf.keras.layers.Dense(NUM_CLASSES-1)) # Note the "-1"
model.compile(loss = condor.CondorOrdinalCrossEntropy(),
              metrics = [condor.OrdinalMeanAbsoluteError()])
model.fit(x = X, y = enc_labs)

See this colab notebook for extended examples of ordinal regression with MNIST and Amazon reviews (universal sentence encoder).

Please post any issues to the issue queue.

Acknowledgments: Many thanks to the CORAL ordinal authors and the CORAL pytorch authors whose repos provided a roadmap for this codebase.

References

Jenkinson, Khezeli, Oliver, Kalantari, Klee. Universally rank consistent ordinal regression in neural networks, arXiv:2110.07470, 2021.

Comments
  • providing weighted metric  causes error

    providing weighted metric causes error

    example code:

    compileOptions = {
    'optimizer': tf.keras.optimizers.Adam(learning_rate=5e-4),
    'loss': condor.CondorOrdinalCrossEntropy(),
    'metrics': [
                condor.OrdinalEarthMoversDistance(name='condorErrOrdinalMoversDist'),
                condor.OrdinalMeanAbsoluteError(name='ordinalMAbsErr')
                ]
    'weighted_metrics': [
                condor.OrdinalEarthMoversDistance(name='condorErrOrdinalMoversDist'),
                condor.OrdinalMeanAbsoluteError(name='ordinalMAbsErr')
                ]
    }
    
    model.compile(**compileOptions)
    model.fit(x=X_train,y=Y_train,batch_size=32,epochs=100,validation_data=(x_val, y_val, val_sample_weights), sample_weight=sampleweight_train)
    
    

    would generate the following error:

    
        File "/usr/local/lib/python3.7/dist-packages/condor_tensorflow/metrics.py", line 24, in update_state  *
            if sample_weight:
    
        ValueError: condition of if statement expected to be `tf.bool` scalar, got Tensor("ExpandDims_1:0", shape=(None, 1), dtype=float32); to use as boolean Tensor, use `tf.cast`; to check for None, use `is not None`
    

    If I don't provide weighted_metrics in model.compile option but remain to use sample_weight=sampleweight_train argument in model.fit, no errors would show up.

    Thank you!

    enhancement 
    opened by tingjhenjiang 7
  • loss reduction support

    loss reduction support

    While I want to do a distributed training including training on Google Colab TPU, errors as shown below would occurs:

    
    /usr/local/lib/python3.7/dist-packages/tensorflow/python/training/tracking/base.py in _method_wrapper(self, *args, **kwargs)
        528     self._self_setattr_tracking = False  # pylint: disable=protected-access
        529     try:
    --> 530       result = method(self, *args, **kwargs)
        531     finally:
        532       self._self_setattr_tracking = previous_value  # pylint: disable=protected-access
    
    /usr/local/lib/python3.7/dist-packages/keras/engine/training_v1.py in compile(self, optimizer, loss, metrics, loss_weights, sample_weight_mode, weighted_metrics, target_tensors, distribute, **kwargs)
        434           targets=self._targets,
        435           skip_target_masks=self._prepare_skip_target_masks(),
    --> 436           masks=self._prepare_output_masks())
        437 
        438       # Prepare sample weight modes. List with the same length as model outputs.
    
    /usr/local/lib/python3.7/dist-packages/keras/engine/training_v1.py in _handle_metrics(self, outputs, targets, skip_target_masks, sample_weights, masks, return_weighted_metrics, return_weighted_and_unweighted_metrics)
       1962           metric_results.extend(
       1963               self._handle_per_output_metrics(self._per_output_metrics[i],
    -> 1964                                               target, output, output_mask))
       1965         if return_weighted_and_unweighted_metrics or return_weighted_metrics:
       1966           metric_results.extend(
    
    /usr/local/lib/python3.7/dist-packages/keras/engine/training_v1.py in _handle_per_output_metrics(self, metrics_dict, y_true, y_pred, mask, weights)
       1913       with backend.name_scope(metric_name):
       1914         metric_result = training_utils_v1.call_metric_function(
    -> 1915             metric_fn, y_true, y_pred, weights=weights, mask=mask)
       1916         metric_results.append(metric_result)
       1917     return metric_results
    
    /usr/local/lib/python3.7/dist-packages/keras/engine/training_utils_v1.py in call_metric_function(metric_fn, y_true, y_pred, weights, mask)
       1175 
       1176   if y_pred is not None:
    -> 1177     return metric_fn(y_true, y_pred, sample_weight=weights)
       1178   # `Mean` metric only takes a single value.
       1179   return metric_fn(y_true, sample_weight=weights)
    
    /usr/local/lib/python3.7/dist-packages/keras/metrics.py in __call__(self, *args, **kwargs)
        235     from keras.distribute import distributed_training_utils  # pylint:disable=g-import-not-at-top
        236     return distributed_training_utils.call_replica_local_fn(
    --> 237         replica_local_fn, *args, **kwargs)
        238 
        239   def __str__(self):
    
    /usr/local/lib/python3.7/dist-packages/keras/distribute/distributed_training_utils.py in call_replica_local_fn(fn, *args, **kwargs)
         58     with strategy.scope():
         59       return strategy.extended.call_for_each_replica(fn, args, kwargs)
    ---> 60   return fn(*args, **kwargs)
         61 
         62 
    
    /usr/local/lib/python3.7/dist-packages/keras/metrics.py in replica_local_fn(*args, **kwargs)
        215         update_op = None
        216       else:
    --> 217         update_op = self.update_state(*args, **kwargs)  # pylint: disable=not-callable
        218       update_ops = []
        219       if update_op is not None:
    
    /usr/local/lib/python3.7/dist-packages/keras/utils/metrics_utils.py in decorated(metric_obj, *args, **kwargs)
         71 
         72     with tf_utils.graph_context_for_symbolic_tensors(*args, **kwargs):
    ---> 73       update_op = update_state_fn(*args, **kwargs)
         74     if update_op is not None:  # update_op will be None in eager execution.
         75       metric_obj.add_update(update_op)
    
    /usr/local/lib/python3.7/dist-packages/keras/metrics.py in update_state_fn(*args, **kwargs)
        175         control_status = tf.__internal__.autograph.control_status_ctx()
        176         ag_update_state = tf.__internal__.autograph.tf_convert(obj_update_state, control_status)
    --> 177         return ag_update_state(*args, **kwargs)
        178     else:
        179       if isinstance(obj.update_state, tf.__internal__.function.Function):
    
    /usr/local/lib/python3.7/dist-packages/tensorflow/python/autograph/impl/api.py in wrapper(*args, **kwargs)
        694       try:
        695         with conversion_ctx:
    --> 696           return converted_call(f, args, kwargs, options=options)
        697       except Exception as e:  # pylint:disable=broad-except
        698         if hasattr(e, 'ag_error_metadata'):
    
    /usr/local/lib/python3.7/dist-packages/tensorflow/python/autograph/impl/api.py in converted_call(f, args, kwargs, caller_fn_scope, options)
        381 
        382   if not options.user_requested and conversion.is_allowlisted(f):
    --> 383     return _call_unconverted(f, args, kwargs, options)
        384 
        385   # internal_convert_user_code is for example turned off when issuing a dynamic
    
    /usr/local/lib/python3.7/dist-packages/tensorflow/python/autograph/impl/api.py in _call_unconverted(f, args, kwargs, options, update_cache)
        462 
        463   if kwargs is not None:
    --> 464     return f(*args, **kwargs)
        465   return f(*args)
        466 
    
    /usr/local/lib/python3.7/dist-packages/keras/metrics.py in update_state(self, y_true, y_pred, sample_weight)
        723 
        724     ag_fn = tf.__internal__.autograph.tf_convert(self._fn, tf.__internal__.autograph.control_status_ctx())
    --> 725     matches = ag_fn(y_true, y_pred, **self._fn_kwargs)
        726     return super(MeanMetricWrapper, self).update_state(
        727         matches, sample_weight=sample_weight)
    
    /usr/local/lib/python3.7/dist-packages/tensorflow/python/autograph/impl/api.py in wrapper(*args, **kwargs)
        694       try:
        695         with conversion_ctx:
    --> 696           return converted_call(f, args, kwargs, options=options)
        697       except Exception as e:  # pylint:disable=broad-except
        698         if hasattr(e, 'ag_error_metadata'):
    
    /usr/local/lib/python3.7/dist-packages/tensorflow/python/autograph/impl/api.py in converted_call(f, args, kwargs, caller_fn_scope, options)
        381 
        382   if not options.user_requested and conversion.is_allowlisted(f):
    --> 383     return _call_unconverted(f, args, kwargs, options)
        384 
        385   # internal_convert_user_code is for example turned off when issuing a dynamic
    
    /usr/local/lib/python3.7/dist-packages/tensorflow/python/autograph/impl/api.py in _call_unconverted(f, args, kwargs, options, update_cache)
        462 
        463   if kwargs is not None:
    --> 464     return f(*args, **kwargs)
        465   return f(*args)
        466 
    
    /usr/local/lib/python3.7/dist-packages/keras/losses.py in __call__(self, y_true, y_pred, sample_weight)
        141       losses = call_fn(y_true, y_pred)
        142       return losses_utils.compute_weighted_loss(
    --> 143           losses, sample_weight, reduction=self._get_reduction())
        144 
        145   @classmethod
    
    /usr/local/lib/python3.7/dist-packages/keras/losses.py in _get_reduction(self)
        182          self.reduction == losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE)):
        183       raise ValueError(
    --> 184           'Please use `tf.keras.losses.Reduction.SUM` or '
        185           '`tf.keras.losses.Reduction.NONE` for loss reduction when losses are '
        186           'used with `tf.distribute.Strategy` outside of the built-in training '
    
    ValueError: Please use `tf.keras.losses.Reduction.SUM` or `tf.keras.losses.Reduction.NONE` for loss reduction when losses are used with `tf.distribute.Strategy` outside of the built-in training loops. You can implement `tf.keras.losses.Reduction.SUM_OVER_BATCH_SIZE` using global batch size like:
    
    with strategy.scope():
        loss_obj = tf.keras.losses.CategoricalCrossentropy(reduction=tf.keras.losses.Reduction.NONE)
        loss = tf.reduce_sum(loss_obj(labels, predictions)) * (1. / global_batch_size)
    Please see https://www.tensorflow.org/tutorials/distribute/custom_training for more details.
    

    it seems that support of loss reduction has not been implemented. It may be a little tricky, but it would be nice if you can add this enhancement.

    Thank you!

    enhancement 
    opened by tingjhenjiang 3
  • Importance weights.

    Importance weights.

    I had a question about the importance weights code below that was in one of the tutorial docs.

    Importance weights customization
    A quick example to show how the importance weights can be customized.
    model = create_model(num_classes = NUM_CLASSES)
    model.summary()
    # We have num_classes - 1 outputs (cumulative logits), so there are 9 elements
    # in the importance vector to customize.
    importance_weights = [1., 1., 0.5, 0.5, 0.5, 1., 1., 0.1, 0.1]
    loss_fn = condor.SparseCondorOrdinalCrossEntropy(importance_weights = importance_weights)
    model.compile(tf.keras.optimizers.Adam(lr = learning_rate), loss = loss_fn)
    history = model.fit(dataset, epochs = num_epochs)
    

    My problem:

    I have 5 classes, with underrepresentation of say the first and lass class. I want to use weights to assign higher importance to the underrepresented classes. In a dense layer with n(classes) == n(output_layers), the vector would look like.

    [1,0.5,0.5,0.5,1]

    With the CONDOR, using num_classes - 1 output layers, is it still possible to assign higher weights to underrepresented classes?

    I don't understand how to relate the N-1 output layers weights to the original weights where n(classes) == n(output_layers).

    Any feedback is appreciated.

    opened by jake-foxy 2
  • activation function at last layer

    activation function at last layer

    Hello, I've a dataset in which the labels are like (0,1,2,3). It means the number of classes in Y is 4.

    Method 1:

    Using the condor.CondorOrdinalEncoder(nclasses=4).fit_transform(labels) to transform labels to an array in shape (n, 3). [ [0,0,1],  [1,0,0] ] as model prediction objects. The last layer is tf.keras.layers.Dense(units=4-1), according to the readme, however by this design the default activation function of the last layer would be None/Linear( f(x) = x), and the output of the model would be simple logits. Should I keep the model outputs simple logits(no activation function)?

    Method 2:

    If I use tf.keras.layers.Dense(units=4-2, activation=condor.ordinal_softmax) as the last layer together with label data in shape (n, 3), would that be fine? (the condor.ordinal_softmax function would increase the number of dimension)

    Method 3: Or I should use tf.keras.layers.Dense(units=4-1, activation=condor.ordinal_softmax) as the last layer together with label data in shape (n, 4)?

    Which method is better? Thank you!

    opened by tingjhenjiang 2
  • Update labelencoder.py

    Update labelencoder.py

    When fitting data with nclass=0:

    1. self.feature_names_in_ would lose its functionality(the previous commit).
    2. Also, using sklearn.compose.ColumnTransformer to transform multiple columns with CondorOrdinalEncoder at a time would cause self.nclass changing in every transformation and thus the transformation would fail, and therefore it is necessary to differentiate.
    opened by tingjhenjiang 1
  • Upadate labelencoder.py add get_feature_names_out method

    Upadate labelencoder.py add get_feature_names_out method

    When I try to integrate sklearn.compose.ColumnTransformer, sklearn.pipeline with condor encoder, I find it difficult and errors happen due to lack of support. Therefore I add the support of get_feature_names_out method, which complies with the structure of sklearn.

    opened by tingjhenjiang 1
Releases(v1.0.1)
Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training Consistency Shift (ICCV 2021)

Π-NAS This repository provides the evaluation code of our submitted paper: Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training

Jiqi Zhang 18 Aug 18, 2022
End-To-End Memory Network using Tensorflow

MemN2N Implementation of End-To-End Memory Networks with sklearn-like interface using Tensorflow. Tasks are from the bAbl dataset. Get Started git clo

Dominique Luna 339 Oct 27, 2022
Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

ChongjianGE 89 Dec 02, 2022
Bayesian algorithm execution (BAX)

Bayesian Algorithm Execution (BAX) Code for the paper: Bayesian Algorithm Execution: Estimating Computable Properties of Black-box Functions Using Mut

Willie Neiswanger 38 Dec 08, 2022
PyTorch implementation of ENet

PyTorch-ENet PyTorch (v1.1.0) implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation, ported from the lua-torc

David Silva 333 Dec 29, 2022
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
Scales, Chords, and Cadences: Practical Music Theory for MIR Researchers

ISMIR-musicTheoryTutorial This repository has slides and Jupyter notebooks for the ISMIR 2021 tutorial Scales, Chords, and Cadences: Practical Music T

Johanna Devaney 58 Oct 11, 2022
Human head pose estimation using Keras over TensorFlow.

RealHePoNet: a robust single-stage ConvNet for head pose estimation in the wild.

Rafael Berral Soler 71 Jan 05, 2023
ElegantRL is featured with lightweight, efficient and stable, for researchers and practitioners.

Lightweight, efficient and stable implementations of deep reinforcement learning algorithms using PyTorch. 🔥

AI4Finance 2.5k Jan 08, 2023
python 93% acc. CNN Dogs Vs Cats ( Pytorch )

English | 简体中文(测试中...敬请期待) Cnn-Classification-Dog-Vs-Cat 猫狗辨别 (pytorch版本) CNN Resnet18 的猫狗分类器,基于ResNet及其变体网路系列,对于一般的图像识别任务表现优异,模型精准度高达93%(小型样本)。 项目制作于

apple ye 1 May 22, 2022
Super-BPD: Super Boundary-to-Pixel Direction for Fast Image Segmentation (CVPR 2020)

Super-BPD for Fast Image Segmentation (CVPR 2020) Introduction We propose direction-based super-BPD, an alternative to superpixel, for fast generic im

189 Dec 07, 2022
Code for generating the figures in the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?"

Code for running simulations for the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Lin

Matthew Farrell 1 Nov 22, 2022
This code is an implementation for Singing TTS.

MLP Singer This code is an implementation for Singing TTS. The algorithm is based on the following papers: Tae, J., Kim, H., & Lee, Y. (2021). MLP Sin

Heejo You 22 Dec 23, 2022
Using machine learning to predict and analyze high and low reader engagement for New York Times articles posted to Facebook.

How The New York Times can increase Engagement on Facebook Using machine learning to understand characteristics of news content that garners "high" Fa

Jessica Miles 0 Sep 16, 2021
Code for the RA-L (ICRA) 2021 paper "SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition"

SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition [ArXiv+Supplementary] [IEEE Xplore RA-L 2021] [ICRA 2021 YouTube Video]

Sourav Garg 63 Dec 12, 2022
Efficiently computes derivatives of numpy code.

Note: Autograd is still being maintained but is no longer actively developed. The main developers (Dougal Maclaurin, David Duvenaud, Matt Johnson, and

Formerly: Harvard Intelligent Probabilistic Systems Group -- Now at Princeton 6.1k Jan 08, 2023
Modular Probabilistic Programming on MXNet

MXFusion | | | | Tutorials | Documentation | Contribution Guide MXFusion is a modular deep probabilistic programming library. With MXFusion Modules yo

Amazon 100 Dec 10, 2022
Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models

Patch-Rotation(PatchRot) Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models Submitted to Neurips2021 To

4 Jul 12, 2021
Datasets for new state-of-the-art challenge in disentanglement learning

High resolution disentanglement datasets This repository contains the Falcor3D and Isaac3D datasets, which present a state-of-the-art challenge for co

NVIDIA Research Projects 37 May 26, 2022
Populating 3D Scenes by Learning Human-Scene Interaction https://posa.is.tue.mpg.de/

Populating 3D Scenes by Learning Human-Scene Interaction [Project Page] [Paper] License Software Copyright License for non-commercial scientific resea

Mohamed Hassan 81 Nov 08, 2022