Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks

Overview

Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks

This is the master thesis project by Giacomo Arcieri, written at the FZI Research Center for Information Technology (Karlsruhe, Germany).

Introduction

Model-Based Reinforcement Learning (MBRL) has recently become popular as it is expected to solve RL problems with fewer trials (i.e. higher sample efficiency) than model-free methods. However, it is not clear how much of the recent MBRL progress is due to improved algorithms or due to improved models. Hence, this work compares a set of mathematical methods that are commonly used as models for MBRL. This thesis aims to provide a benchmark to assess the model influence on RL algorithms. The evaluated models will be (deterministic) Neural Networks (NNs), ensembles of (deterministic) NNs, Bayesian Neural Networks (BNNs), and Gaussian Processes (GPs). Two different and innovative BNNs are applied: the Concrete Dropout NN and the Anchored Ensembling. The model performance is assessed on a large suite of different benchmarking environments, namely one OpenAI Gym Classic Control problem (Pendulum) and seven PyBullet-Gym tasks (MuJoCo implementation). The RL algorithm the model performance is assessed on is Model Predictive Control (MPC) combined with Random Shooting (RS).

Requirements

This project is tested on Python 3.6.

First, you can perform a minimal installation of OpenAI Gym with

git clone https://github.com/openai/gym.git
cd gym
pip install -e .

Then, you can install Pybullet-Gym with

git clone https://github.com/benelot/pybullet-gym.git
cd pybullet-gym
pip install -e .

Important: Do not use python setup.py install or other Pybullet-Gym installation methods.

Finally, you can install all the dependencies with

pip install -r requirements.txt

Important: There are a couple of changes to make in two Pybullet-Gym envs:

  1. There is currently a mistake in Hopper. This project uses HopperMuJoCoEnv-v0, but this env imports the Roboschool locomotor instead of the MuJoCo locomotor. Open the file
pybullet-gym/pybulletgym/envs/mujoco/envs/locomotion/hopper_env.py

and change

from pybulletgym.envs.roboschool.robots.locomotors import Hopper

with

from pybulletgym.envs.mujoco.robots.locomotors.hopper import Hopper
  1. Ant has obs_dim=111 but only the first 27 obs are important, the others are only zeros. If it is true that these zeros do not affect performance, it is also true they slow down the training, especially for the Gaussian Process. Therefore, it is better to delete these unimportant obs. Open the file
pybullet-gym/pybulletgym/envs/mujoco/robots/locomotors/ant.py

and set obs_dim=27 and comment or delete line 25

np.clip(cfrc_ext, -1, 1).flat

Project Description

Models

The models are defined in the folder models:

  • deterministicNN.py: it includes the deterministic NN (NN) and the deterministic ensemble (ens_NNs).

  • PNN.py: here the Anchored Ensembling is defined following this example. PNN defines one NN of the Anchored Ensembling. This is needed to define ens_PNNs which is the Anchored Ensembling as well as the model applied in the evaluation.

  • ConcreteDropout.py: it defines the Concrete Dropout NN, mainly based on the Yarin Gal's notebook, but also on this other project. First, the ConcreteDropout Layer is defined. Then, the Concrete Dropout NN is designed (BNN). Finally, also an ensemble of Concrete Dropout NNs is defined (ens_BNN), but I did not use it in the model comparison (ens_BNN is extremely slow and BNN is already like an ensemble).

  • GP.py: it defines the Gaussian Process model based on gpflow. Two different versions are applied: the GPR and the SVGP (choose by setting the parameter gp_model). Only the GPR performance is reported in the evaluation because the SVGP has not even solved the Pendulum environment.

RL algorithm

The model performance is evaluated in the following files:

  1. main.py: it is defined the function main which takes all the params that are passed to MB_trainer. Five MB_trainer are initialized, each with a different seed, which are run in parallel. It is also possible to run two models in parallel by setting the param model2 as well.

  2. MB_trainer.py: it includes the initialization of the env and the model as well as the RL training loop. The function play_one_step computes one step of the loop. The model is trained with the function training_step. At the end of the loop, a pickle file is saved, wich includes all the rewards achieved by the model in all the episodes of the env.

  3. play_one_step.py: it includes all the functions to compute one step (i.e. to choose one action): the epsilon greedy policy for the exploration, the Information Gain exploration, and the exploitation of the model with MPC+RS (function get_action). The rewards as well as the RS trajectories are computed with the cost functions in cost_functions.py.

  4. training_step.py: first the relevant information is prepared by the function data_training, then the model is trained with the function training_step.

  5. cost_functions.py: it includes all the cost functions of the envs.

Other two files are contained in the folder rewards:

  • plot_rewards.ipynb: it is the notebook where the model performance is plotted. First, the 5 pickles associated with the 5 seeds are combined in only one pickle. Then, the performance is evaluated with various plots.

  • distribution.ipynb: this notebook inspects the distribution of the seeds in InvertedDoublePendulum (Section 6.9 of the thesis).

Results

Our results show significant differences among models performance do exist.

It is the Concrete Dropout NN the clear winner of the model comparison. It reported higher sample efficiency, overall performance and robustness across different seeds in Pendulum, InvertedPendulum, InvertedDoublePendulum, ReacherPyBullet, HalfCheetah, and Hopper. In Walker2D and Ant it was no worse than the others either.

Authors should be aware of the differences found and distinguish between improvements due to better algorithms or due to better models when they present novel methods.

The figures of the evaluation are reported in the folder rewards/images.

Acknowledgment

Special thanks go to the supervisor of this project David Woelfle.

Owner
Giacomo Arcieri
Giacomo Arcieri
Code repository accompanying the paper "On Adversarial Robustness: A Neural Architecture Search perspective"

On Adversarial Robustness: A Neural Architecture Search perspective Preparation: Clone the repository: https://github.com/tdchaitanya/nas-robustness.g

Chaitanya Devaguptapu 4 Nov 10, 2022
This is a pytorch implementation for the BST model from Alibaba https://arxiv.org/pdf/1905.06874.pdf

Behavior-Sequence-Transformer-Pytorch This is a pytorch implementation for the BST model from Alibaba https://arxiv.org/pdf/1905.06874.pdf This model

Jaime Ferrando Huertas 83 Jan 05, 2023
Simple transformer model for CIFAR10

CIFAR-Transformer Simple transformer model for CIFAR10. Reference: https://www.tensorflow.org/text/tutorials/transformer https://github.com/huggingfac

9 Nov 07, 2022
Implicit Deep Adaptive Design (iDAD)

Implicit Deep Adaptive Design (iDAD) This code supports the NeurIPS paper 'Implicit Deep Adaptive Design: Policy-Based Experimental Design without Lik

Desi 12 Aug 14, 2022
CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer

CSAW-M This repository contains code for CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer. Source code for tr

Yue Liu 7 Oct 11, 2022
Exact Pareto Optimal solutions for preference based Multi-Objective Optimization

Exact Pareto Optimal solutions for preference based Multi-Objective Optimization

Debabrata Mahapatra 40 Dec 24, 2022
Making self-supervised learning work on molecules by using their 3D geometry to pre-train GNNs. Implemented in DGL and Pytorch Geometric.

3D Infomax improves GNNs for Molecular Property Prediction Video | Paper We pre-train GNNs to understand the geometry of molecules given only their 2D

Hannes Stärk 95 Dec 30, 2022
E2e music remastering system - End-to-end Music Remastering System Using Self-supervised and Adversarial Training

End-to-end Music Remastering System This repository includes source code and pre

Junghyun (Tony) Koo 37 Dec 15, 2022
A Pytorch Implementation for Compact Bilinear Pooling.

CompactBilinearPooling-Pytorch A Pytorch Implementation for Compact Bilinear Pooling. Adapted from tensorflow_compact_bilinear_pooling Prerequisites I

169 Dec 23, 2022
Classical OCR DCNN reproduction based on PaddlePaddle framework.

Paddle-SVHN Classical OCR DCNN reproduction based on PaddlePaddle framework. This project reproduces Multi-digit Number Recognition from Street View I

1 Nov 12, 2021
IhoneyBakFileScan Modify - 批量网站备份文件扫描器,增加文件规则,优化内存占用

ihoneyBakFileScan_Modify 批量网站备份文件泄露扫描工具 2022.2.8 添加、修改内容 增加备份文件fuzz规则 修改备份文件大小判断

VMsec 220 Jan 05, 2023
In this project I played with mlflow, streamlit and fastapi to create a training and prediction app on digits

Fastapi + MLflow + streamlit Setup env. I hope I covered all. pip install -r requirements.txt Start app Go in the root dir and run these Streamlit str

76 Nov 23, 2022
Official implementation of "Generating 3D Molecules for Target Protein Binding"

Generating 3D Molecules for Target Protein Binding This is the official implementation of the GraphBP method proposed in the following paper. Meng Liu

DIVE Lab, Texas A&M University 74 Dec 07, 2022
Official implementation of the paper 'High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network' in CVPR 2021

LPTN Paper | Supplementary Material | Poster High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network Ji

372 Dec 26, 2022
Rapid experimentation and scaling of deep learning models on molecular and crystal graphs.

LitMatter A template for rapid experimentation and scaling deep learning models on molecular and crystal graphs. How to use Clone this repository and

Nathan Frey 32 Dec 06, 2022
A lightweight Python-based 3D network multi-agent simulator. Uses a cell-based congestion model. Calculates risk, loudness and battery capacities of the agents. Suitable for 3D network optimization tasks.

AMAZ3DSim AMAZ3DSim is a lightweight python-based 3D network multi-agent simulator. It uses a cell-based congestion model. It calculates risk, battery

Daniel Hirsch 13 Nov 04, 2022
Deep Multimodal Neural Architecture Search

MMNas: Deep Multimodal Neural Architecture Search This repository corresponds to the PyTorch implementation of the MMnas for visual question answering

Vision and Language Group@ MIL 23 Dec 21, 2022
The codebase for our paper "Generative Occupancy Fields for 3D Surface-Aware Image Synthesis" (NeurIPS 2021)

Generative Occupancy Fields for 3D Surface-Aware Image Synthesis (NeurIPS 2021) Project Page | Paper Xudong Xu, Xingang Pan, Dahua Lin and Bo Dai GOF

xuxudong 97 Nov 10, 2022
Reference code for the paper "Cross-Camera Convolutional Color Constancy" (ICCV 2021)

Cross-Camera Convolutional Color Constancy, ICCV 2021 (Oral) Mahmoud Afifi1,2, Jonathan T. Barron2, Chloe LeGendre2, Yun-Ta Tsai2, and Francois Bleibe

Mahmoud Afifi 76 Jan 07, 2023
Code for "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" @ICRA2021

CloudAAE This is an tensorflow implementation of "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" Files log:

Gee 35 Nov 14, 2022