The Easy-to-use Dialogue Response Selection Toolkit for Researchers

Overview

Easy-to-use toolkit for retrieval-based Chatbot

Recent Activity

  1. Our released RRS corpus can be found here.
  2. Our released BERT-FP post-training checkpoint for the RRS corpus can be found here.
  3. Our related work (Exploring Dense Retrieval for Dialogue Response Selection) can be found here.

How to Use

  1. Init the repo

    Before using the repo, please run the following command to init:

    # create the necessay folders
    python init.py
    
    # prepare the environment
    # if some package cannot be installed, just google and install it from other ways
    pip install -r requirements.txt
  2. train the model

    ./scripts/train.sh <dataset_name> <model_name> <cuda_ids>
  3. test the model [rerank]

    ./scripts/test_rerank.sh <dataset_name> <model_name> <cuda_id>
  4. test the model [recal]

    # different recall_modes are available: q-q, q-r
    ./scripts/test_recall.sh <dataset_name> <model_name> <cuda_id>
  5. inference the responses and save into the faiss index

    Somethings inference will missing data samples, please use the 1 gpu (faiss-gpu search use 1 gpu quickly)

    It should be noted that: 1. For writer dataset, use extract_inference.py script to generate the inference.txt 2. For other datasets(douban, ecommerce, ubuntu), just cp train.txt inference.txt. The dataloader will automatically read the test.txt to supply the corpus.

    # work_mode=response, inference the response and save into faiss (for q-r matching) [dual-bert/dual-bert-fusion]
    # work_mode=context, inference the context to do q-q matching
    # work_mode=gray, inference the context; read the faiss(work_mode=response has already been done), search the topk hard negative samples; remember to set the BERTDualInferenceContextDataloader in config/base.yaml
    ./scripts/inference.sh <dataset_name> <model_name> <cuda_ids>

    If you want to generate the gray dataset for the dataset:

    # 1. set the mode as the **response**, to generate the response faiss index; corresponding dataset name: BERTDualInferenceDataset;
    ./scripts/inference.sh <dataset_name> response <cuda_ids>
    
    # 2. set the mode as the **gray**, to inference the context in the train.txt and search the top-k candidates as the gray(hard negative) samples; corresponding dataset name: BERTDualInferenceContextDataset
    ./scripts/inference.sh <dataset_name> gray <cuda_ids>
    
    # 3. set the mode as the **gray-one2many** if you want to generate the extra positive samples for each context in the train set, the needings of this mode is the same as the **gray** work mode
    ./scripts/inference.sh <dataset_name> gray-one2many <cuda_ids>

    If you want to generate the pesudo positive pairs, run the following commands:

    # make sure the dual-bert inference dataset name is BERTDualInferenceDataset
    ./scripts/inference.sh <dataset_name> unparallel <cuda_ids>
  6. deploy the rerank and recall model

    # load the model on the cuda:0(can be changed in deploy.sh script)
    ./scripts/deploy.sh <cuda_id>

    at the same time, you can test the deployed model by using:

    # test_mode: recall, rerank, pipeline
    ./scripts/test_api.sh <test_mode> <dataset>
  7. test the recall performance of the elasticsearch

    Before testing the es recall, make sure the es index has been built:

    # recall_mode: q-q/q-r
    ./scripts/build_es_index.sh <dataset_name> <recall_mode>
    # recall_mode: q-q/q-r
    ./scripts/test_es_recall.sh <dataset_name> <recall_mode> 0
  8. simcse generate the gray responses

    # train the simcse model
    ./script/train.sh <dataset_name> simcse <cuda_ids>
    # generate the faiss index, dataset name: BERTSimCSEInferenceDataset
    ./script/inference_response.sh <dataset_name> simcse <cuda_ids>
    # generate the context index
    ./script/inference_simcse_response.sh <dataset_name> simcse <cuda_ids>
    # generate the test set for unlikelyhood-gen dataset
    ./script/inference_simcse_unlikelyhood_response.sh <dataset_name> simcse <cuda_ids>
    # generate the gray response
    ./script/inference_gray_simcse.sh <dataset_name> simcse <cuda_ids>
    # generate the test set for unlikelyhood-gen dataset
    ./script/inference_gray_simcse_unlikelyhood.sh <dataset_name> simcse <cuda_ids>
Owner
GMFTBY
Those who are crazy enough to think they can change the world are the ones who can.
GMFTBY
Official PyTorch implementation of Time-aware Large Kernel (TaLK) Convolutions (ICML 2020)

Time-aware Large Kernel (TaLK) Convolutions (Lioutas et al., 2020) This repository contains the source code, pre-trained models, as well as instructio

Vasileios Lioutas 28 Dec 07, 2022
Simple tool/toolkit for evaluating NLG (Natural Language Generation) offering various automated metrics.

Simple tool/toolkit for evaluating NLG (Natural Language Generation) offering various automated metrics. Jury offers a smooth and easy-to-use interface. It uses datasets for underlying metric computa

Open Business Software Solutions 129 Jan 06, 2023
This is an incredibly powerful calculator that is capable of many useful day-to-day functions.

Description 💻 This is an incredibly powerful calculator that is capable of many useful day-to-day functions. Such functions include solving basic ari

Jordan Leich 37 Nov 19, 2022
Tokenizer - Module python d'analyse syntaxique et de grammaire, tokenization

Tokenizer Le Tokenizer est un analyseur lexicale, il permet, comme Flex and Yacc par exemple, de tokenizer du code, c'est à dire transformer du code e

Manolo 1 Aug 15, 2022
AudioCLIP Extending CLIP to Image, Text and Audio

AudioCLIP Extending CLIP to Image, Text and Audio This repository contains implementation of the models described in the paper arXiv:2106.13043. This

458 Jan 02, 2023
SNCSE: Contrastive Learning for Unsupervised Sentence Embedding with Soft Negative Samples

SNCSE SNCSE: Contrastive Learning for Unsupervised Sentence Embedding with Soft Negative Samples This is the repository for SNCSE. SNCSE aims to allev

Sense-GVT 59 Jan 02, 2023
Retraining OpenAI's GPT-2 on Discord Chats

Train OpenAI's GPT-2 on Discord Chats Retraining a Text Generation Model on Discord Chats using gpt-2-simple that wraps existing model fine-tuning and

Ayush Mishra 4 Oct 27, 2022
Repository for the paper: VoiceMe: Personalized voice generation in TTS

🗣 VoiceMe: Personalized voice generation in TTS Abstract Novel text-to-speech systems can generate entirely new voices that were not seen during trai

Pol van Rijn 80 Dec 29, 2022
BiNE: Bipartite Network Embedding

BiNE: Bipartite Network Embedding This repository contains the demo code of the paper: BiNE: Bipartite Network Embedding. Ming Gao, Leihui Chen, Xiang

leihuichen 214 Nov 24, 2022
The swas programming language

The Swas programming language This is a language that was made for fun. Installation Step 0: Make sure you have python installed Step 1. Clone this re

Swas.py 19 Jul 18, 2022
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision Training Efficiency We show the training efficiency of our DSLP model b

Chenyang Huang 37 Jan 04, 2023
Conversational text Analysis using various NLP techniques

Conversational text Analysis using various NLP techniques

Rita Anjana 159 Jan 06, 2023
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Jungil Kong 1.1k Jan 02, 2023
precise iris segmentation

PI-DECODER Introduction PI-DECODER, a decoder structure designed for Precise Iris Segmentation and Location. The decoder structure is shown below: Ple

8 Aug 08, 2022
Paradigm Shift in NLP - "Paradigm Shift in Natural Language Processing".

Paradigm Shift in NLP Welcome to the webpage for "Paradigm Shift in Natural Language Processing". Some resources of the paper are constantly maintaine

Tianxiang Sun 41 Dec 30, 2022
keras implement of transformers for humans

keras implement of transformers for humans

苏剑林(Jianlin Su) 4.8k Jan 03, 2023
中文无监督SimCSE Pytorch实现

A PyTorch implementation of unsupervised SimCSE SimCSE: Simple Contrastive Learning of Sentence Embeddings 1. 用法 无监督训练 python train_unsup.py ./data/ne

99 Dec 23, 2022
ProtFeat is protein feature extraction tool that utilizes POSSUM and iFeature.

Description: ProtFeat is designed to extract the protein features by employing POSSUM and iFeature python-based tools. ProtFeat includes a total of 39

GOKHAN OZSARI 5 Dec 16, 2022
Develop open-source Python Arabic NLP libraries that the Arab world will easily use in all Natural Language Processing applications

Develop open-source Python Arabic NLP libraries that the Arab world will easily use in all Natural Language Processing applications

BADER ALABDAN 2 Oct 22, 2022