UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language

Overview

UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language

This repository contains UA-GEC data and an accompanying Python library.

Data

All corpus data and metadata stay under the ./data. It has two subfolders for train and test splits

Each split (train and test) has further subfolders for different data representations:

./data/{train,test}/annotated stores documents in the annotated format

./data/{train,test}/source and ./data/{train,test}/target store the original and the corrected versions of documents. Text files in these directories are plain text with no annotation markup. These files were produced from the annotated data and are, in some way, redundant. We keep them because this format is convenient in some use cases.

Metadata

./data/metadata.csv stores per-document metadata. It's a CSV file with the following fields:

  • id (str): document identifier.
  • author_id (str): document author identifier.
  • is_native (int): 1 if the author is native-speaker, 0 otherwise
  • region (str): the author's region of birth. A special value "Інше" is used both for authors who were born outside Ukraine and authors who preferred not to specify their region.
  • gender (str): could be "Жіноча" (female), "Чоловіча" (male), or "Інша" (other).
  • occupation (str): one of "Технічна", "Гуманітарна", "Природнича", "Інша"
  • submission_type (str): one of "essay", "translation", or "text_donation"
  • source_language (str): for submissions of the "translation" type, this field indicates the source language of the translated text. Possible values are "de", "en", "fr", "ru", and "pl".
  • annotator_id (int): ID of the annotator who corrected the document.
  • partition (str): one of "test" or "train"
  • is_sensitive (int): 1 if the document contains profanity or offensive language

Annotation format

Annotated files are text files that use the following in-text annotation format: {error=>edit:::error_type=Tag}, where error and edit stand for the text item before and after correction respectively, and Tag denotes an error category (Grammar, Spelling, Punctuation, or Fluency).

Example of an annotated sentence:

    I {likes=>like:::error_type=Grammar} turtles.

An accompanying Python package, ua_gec, provides many tools for working with annotated texts. See its documentation for details.

Train-test split

We expect users of the corpus to train and tune their models on the train split only. Feel free to further split it into train-dev (or use cross-validation).

Please use the test split only for reporting scores of your final model. In particular, never optimize on the test set. Do not tune hyperparameters on it. Do not use it for model selection in any way.

Next section lists the per-split statistics.

Statistics

UA-GEC contains:

Split Documents Sentences Tokens Authors
train 851 18,225 285,247 416
test 160 2,490 43,432 76
TOTAL 1,011 20,715 328,779 492

See stats.txt for detailed statistics generated by the following command (ua-gec must be installed first):

$ make stats

Python library

Alternatively to operating on data files directly, you may use a Python package called ua_gec. This package includes the data and has classes to iterate over documents, read metadata, work with annotations, etc.

Getting started

The package can be easily installed by pip:

    $ pip install ua_gec==1.1

Alternatively, you can install it from the source code:

    $ cd python
    $ python setup.py develop

Iterating through corpus

Once installed, you may get annotated documents from the Python code:

    
    >>> from ua_gec import Corpus
    >>> corpus = Corpus(partition="train")
    >>> for doc in corpus:
    ...     print(doc.source)         # "I likes it."
    ...     print(doc.target)         # "I like it."
    ...     print(doc.annotated)      # <AnnotatedText("I {likes=>like} it.")
    ...     print(doc.meta.region)    # "Київська"

Note that the doc.annotated property is of type AnnotatedText. This class is described in the next section

Working with annotations

ua_gec.AnnotatedText is a class that provides tools for processing annotated texts. It can iterate over annotations, get annotation error type, remove some of the annotations, and more.

While we're working on a detailed documentation, here is an example to get you started. It will remove all Fluency annotations from a text:

    >>> from ua_gec import AnnotatedText
    >>> text = AnnotatedText("I {likes=>like:::error_type=Grammar} it.")
    >>> for ann in text.iter_annotations():
    ...     print(ann.source_text)       # likes
    ...     print(ann.top_suggestion)    # like
    ...     print(ann.meta)              # {'error_type': 'Grammar'}
    ...     if ann.meta["error_type"] == "Fluency":
    ...         text.remove(ann)         # or `text.apply(ann)`

Contributing

  • The data collection is an ongoing activity. You can always contribute your Ukrainian writings or complete one of the writing tasks at https://ua-gec-dataset.grammarly.ai/

  • Code improvements and document are welcomed. Please submit a pull request.

Contacts

Owner
Grammarly
Millions of users rely on Grammarly's AI-powered products to make their messages, documents, and social media posts clear, mistake-free, and impactful.
Grammarly
Examples of using f2py to get high-speed Fortran integrated with Python easily

f2py Examples Simple examples of using f2py to get high-speed Fortran integrated with Python easily. These examples are also useful to troubleshoot pr

Michael 35 Aug 21, 2022
PyTorch implementation of an end-to-end Handwritten Text Recognition (HTR) system based on attention encoder-decoder networks

AttentionHTR PyTorch implementation of an end-to-end Handwritten Text Recognition (HTR) system based on attention encoder-decoder networks. Scene Text

Dmitrijs Kass 31 Dec 22, 2022
A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing"

A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing" (WebConf 2021). Abstract In this work we propose Pathfind

Benedek Rozemberczki 49 Dec 01, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

Wenhao Wang 89 Jan 02, 2023
Tracing Versus Freehand for Evaluating Computer-Generated Drawings (SIGGRAPH 2021)

Tracing Versus Freehand for Evaluating Computer-Generated Drawings (SIGGRAPH 2021) Zeyu Wang, Sherry Qiu, Nicole Feng, Holly Rushmeier, Leonard McMill

Zach Zeyu Wang 23 Dec 09, 2022
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real Time Video Interpolation arXiv | YouTube | Colab | Tutorial | Demo Table of Contents Introduction Collection Usage Evaluation Training and

hzwer 3k Jan 04, 2023
The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization

PRIMER The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization. PRIMER is a pre-trained model for mu

AI2 111 Dec 18, 2022
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
A solution to ensure Crowd Management with Contactless and Safe systems.

CovidTrack A Solution to ensure Crowd Management with Contactless and Safe systems. ML Model Mask Detection Social Distancing Detection Analytics Page

Om Khare 1 Nov 10, 2021
Pure python implementations of popular ML algorithms.

Minimal ML algorithms This repo includes minimal implementations of popular ML algorithms using pure python and numpy. The purpose of these notebooks

Alexis Gidiotis 3 Jan 10, 2022
Stochastic gradient descent with model building

Stochastic Model Building (SMB) This repository includes a new fast and robust stochastic optimization algorithm for training deep learning models. Th

S. Ilker Birbil 22 Jan 19, 2022
Pytorch implementation of MalConv

MalConv-Pytorch A Pytorch implementation of MalConv Desciprtion This is the implementation of MalConv proposed in Malware Detection by Eating a Whole

Alexander H. Liu 58 Oct 26, 2022
3D-Reconstruction 基于深度学习方法的单目多视图三维重建

基于深度学习方法的单目多视图三维重建 Part I 三维重建 代码:Part1 技术文档:[Markdown] [PDF] 原始图像:Original Images 点云结果:Point Cloud Results-1

HMT_Curo 19 Dec 26, 2022
Neighborhood Reconstructing Autoencoders

Neighborhood Reconstructing Autoencoders The official repository for Neighborhood Reconstructing Autoencoders (Lee, Kwon, and Park, NeurIPS 2021). T

Yonghyeon Lee 24 Dec 14, 2022
Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks

This is the code associated with the paper Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks, published at CVPR 2020.

Thomas Roddick 219 Dec 20, 2022
Pytorch implementation for Patient Knowledge Distillation for BERT Model Compression

Patient Knowledge Distillation for BERT Model Compression Knowledge distillation for BERT model Installation Run command below to install the environm

Siqi 180 Dec 19, 2022
Core ML tools contain supporting tools for Core ML model conversion, editing, and validation.

Core ML Tools Use coremltools to convert machine learning models from third-party libraries to the Core ML format. The Python package contains the sup

Apple 3k Jan 08, 2023
Subgraph Based Learning of Contextual Embedding

SLiCE Self-Supervised Learning of Contextual Embeddings for Link Prediction in Heterogeneous Networks Dataset details: We use four public benchmark da

Pacific Northwest National Laboratory 27 Dec 01, 2022
Single object tracking and segmentation.

Single/Multiple Object Tracking and Segmentation Codes and comparison of recent single/multiple object tracking and segmentation. News 💥 AutoMatch is

ZP ZHANG 385 Jan 02, 2023
Extracts essential Mediapipe face landmarks and arranges them in a sequenced order.

simplified_mediapipe_face_landmarks Extracts essential Mediapipe face landmarks and arranges them in a sequenced order. The default 478 Mediapipe face

Irfan 13 Oct 04, 2022