Official implementation of YOGO for Point-Cloud Processing

Related tags

Deep LearningYOGO
Overview

You Only Group Once: Efficient Point-Cloud Processing with Token Representation and Relation Inference Module

By Chenfeng Xu, Bohan Zhai, Bichen Wu, Tian Li, Wei Zhan, Peter Vajda, Kurt Keutzer, and Masayoshi Tomizuka.

This repository contains a Pytorch implementation of YOGO, a new, simple, and elegant model for point-cloud processing. The framework of our YOGO is shown below:

Selected quantitative results of different approaches on the ShapeNet and S3DIS dataset.

ShapeNet part segmentation:

Method mIoU Latency (ms) GPU Memory (GB)
PointNet 83.7 21.4 1.5
RSNet 84.9 73.8 0.8
PointNet++ 85.1 77.7 2.0
DGCNN 85.1 86.7 2.4
PointCNN 86.1 134.2 2.5
YOGO(KNN) 85.2 25.6 0.9
YOGO(Ball query) 85.1 21.3 1.0

S3DIS scene parsing:

Method mIoU Latency (ms) GPU Memory (GB)
PointNet 42.9 24.8 1.0
RSNet 51.9 111.5 1.1
PointNet++* 50.7 501.5 1.6
DGCNN 47.9 174.3 2.4
PointCNN 57.2 282.4 4.6
YOGO(KNN) 54.0 27.7 2.0
YOGO(Ball query) 53.8 24.0 2.0

For more detail, please refer to our paper: YOGO. The work is a follow-up work to SqueezeSegV3 and Visual Transformers. If you find this work useful for your research, please consider citing:

@misc{xu2021group,
      title={You Only Group Once: Efficient Point-Cloud Processing with Token Representation and Relation Inference Module}, 
      author={Chenfeng Xu and Bohan Zhai and Bichen Wu and Tian Li and Wei Zhan and Peter Vajda and Kurt Keutzer and Masayoshi Tomizuka},
      year={2021},
      eprint={2103.09975},
      archivePrefix={arXiv},
      primaryClass={cs.RO}
}

Related works:

@inproceedings{xu2020squeezesegv3,
  title={Squeezesegv3: Spatially-adaptive convolution for efficient point-cloud segmentation},
  author={Xu, Chenfeng and Wu, Bichen and Wang, Zining and Zhan, Wei and Vajda, Peter and Keutzer, Kurt and Tomizuka, Masayoshi},
  booktitle={European Conference on Computer Vision},
  pages={1--19},
  year={2020},
  organization={Springer}
}
@misc{wu2020visual,
      title={Visual Transformers: Token-based Image Representation and Processing for Computer Vision}, 
      author={Bichen Wu and Chenfeng Xu and Xiaoliang Dai and Alvin Wan and Peizhao Zhang and Zhicheng Yan and Masayoshi Tomizuka and Joseph Gonzalez and Kurt Keutzer and Peter Vajda},
      year={2020},
      eprint={2006.03677},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

License

YOGO is released under the BSD license (See LICENSE for details).

Installation

The instructions are tested on Ubuntu 16.04 with python 3.6 and Pytorch 1.5 with GPU support.

  • Clone the YOGO repository:
git clone https://github.com/chenfengxu714/YOGO.git
  • Use pip to install required Python packages:
pip install -r requirements.txt
  • Install KNN library:
cd convpoint/knn/
python setup.py install --home='.'

Pre-trained Models

The pre-trained YOGO is avalible at Google Drive, you can directly download them.

Inference

To infer the predictions for the entire dataset:

python train.py [config-file] --devices [gpu-ids] --evaluate --configs.evaluate.best_checkpoint_path [path to the model checkpoint]

for example, you can run the below command for ShapeNet inference:

python train.py configs/shapenet/yogo/yogo.py --devices 0 --evaluate --configs.evaluate.best_checkpoint_path ./runs/shapenet/best.pth

Training:

To train the model:

python train.py [config-file] --devices [gpu-ids] --evaluate --configs.evaluate.best_checkpoint_path [path to the model checkpoint]

for example, you can run the below command for ShapeNet training:

python train.py configs/shapenet/yogo/yogo.py --devices 0

You can run the below command for multi-gpu training:

python train.py configs/shapenet/yogo/yogo.py --devices 0,1,2,3

Note that we conduct training on Titan RTX gpu, you can modify the batch size according your GPU memory, the performance is slightly different.

Acknowledgement:

The code is modified from PVCNN and the code for KNN is from Pointconv.

Owner
Chenfeng Xu
A Ph.D. student in UC Berkeley.
Chenfeng Xu
Code release for ICCV 2021 paper "Anticipative Video Transformer"

Anticipative Video Transformer Ranked first in the Action Anticipation task of the CVPR 2021 EPIC-Kitchens Challenge! (entry: AVT-FB-UT) [project page

Facebook Research 123 Dec 13, 2022
LAMDA: Label Matching Deep Domain Adaptation

LAMDA: Label Matching Deep Domain Adaptation This is the implementation of the paper LAMDA: Label Matching Deep Domain Adaptation which has been accep

Tuan Nguyen 9 Sep 06, 2022
This repository contains all data used for writing a research paper Multiple Object Trackers in OpenCV: A Benchmark, presented in ISIE 2021 conference in Kyoto, Japan.

OpenCV-Multiple-Object-Tracking Python is version 3.6.7 to install opencv: pip uninstall opecv-python pip uninstall opencv-contrib-python pip install

6 Dec 19, 2021
Multivariate Time Series Transformer, public version

Multivariate Time Series Transformer Framework This code corresponds to the paper: George Zerveas et al. A Transformer-based Framework for Multivariat

363 Jan 03, 2023
Self-labelling via simultaneous clustering and representation learning. (ICLR 2020)

Self-labelling via simultaneous clustering and representation learning ๐Ÿ†— ๐Ÿ†— ๐ŸŽ‰ NEW models (20th August 2020): Added standard SeLa pretrained torchvis

Yuki M. Asano 469 Jan 02, 2023
Related resources for our EMNLP 2021 paper

Plan-then-Generate: Controlled Data-to-Text Generation via Planning Authors: Yixuan Su, David Vandyke, Sihui Wang, Yimai Fang, and Nigel Collier Code

Yixuan Su 61 Jan 03, 2023
[CVPR2021 Oral] End-to-End Video Instance Segmentation with Transformers

VisTR: End-to-End Video Instance Segmentation with Transformers This is the official implementation of the VisTR paper: Installation We provide instru

Yuqing Wang 687 Jan 07, 2023
Nest - A flexible tool for building and sharing deep learning modules

Nest - A flexible tool for building and sharing deep learning modules Nest is a flexible deep learning module manager, which aims at encouraging code

ZhouYanzhao 41 Oct 10, 2022
Official implementation for the paper: Generating Smooth Pose Sequences for Diverse Human Motion Prediction

Generating Smooth Pose Sequences for Diverse Human Motion Prediction This is official implementation for the paper Generating Smooth Pose Sequences fo

Wei Mao 28 Dec 10, 2022
Open source implementation of AceNAS: Learning to Rank Ace Neural Architectures with Weak Supervision of Weight Sharing

AceNAS This repo is the experiment code of AceNAS, and is not considered as an official release. We are working on integrating AceNAS as a built-in st

Yuge Zhang 6 Sep 07, 2022
CS506-Spring2022 - Code and Slides for Boston University CS 506

CS 506 - Computational Tools for Data Science Code, slides, and notes for Boston

Lance Galletti 17 May 06, 2022
TriMap: Large-scale Dimensionality Reduction Using Triplets

TriMap TriMap is a dimensionality reduction method that uses triplet constraints to form a low-dimensional embedding of a set of points. The triplet c

Ehsan Amid 235 Dec 24, 2022
Cookiecutter PyTorch Lightning

Cookiecutter PyTorch Lightning Instructions # install cookiecutter pip install cookiecutter

Mazen 8 Nov 06, 2022
A baseline code for VSPW

A baseline code for VSPW Preparation Download VSPW dataset The VSPW dataset with extracted frames and masks is available here.

28 Aug 22, 2022
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.

Music Source Separation with Channel-wise Subband Phase Aware ResUnet (CWS-PResUNet) Introduction This repo contains the pretrained Music Source Separ

Lau 100 Dec 25, 2022
A toy project using OpenCV and PyMunk

A toy project using OpenCV, PyMunk and Mediapipe the source code for my LindkedIn post It's just a toy project and I didn't write a documentation yet,

Amirabbas Asadi 82 Oct 28, 2022
This is the official PyTorch implementation of our paper: "Artistic Style Transfer with Internal-external Learning and Contrastive Learning".

Artistic Style Transfer with Internal-external Learning and Contrastive Learning This is the official PyTorch implementation of our paper: "Artistic S

51 Dec 20, 2022
ZeroGen: Efficient Zero-shot Learning via Dataset Generation

ZEROGEN This repository contains the code for our paper โ€œZeroGen: Efficient Zero

Jiacheng Ye 31 Dec 30, 2022
AISTATS 2019: Confidence-based Graph Convolutional Networks for Semi-Supervised Learning

Confidence-based Graph Convolutional Networks for Semi-Supervised Learning Source code for AISTATS 2019 paper: Confidence-based Graph Convolutional Ne

MALL Lab (IISc) 56 Dec 03, 2022
Codes for AAAI22 paper "Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum"

Paper For more details, please see our paper Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum which has been accepted a

14 Sep 30, 2022