Binary classification for arrythmia detection with ECG datasets.

Overview

HEART DISEASE AI DATATHON 2021

[Eng] / [Kor]


#English

This is an AI diagnosis modeling contest that uses the heart disease echocardiography and electrocardiogram datasets for artificial intelligence learning promoted as part of the "2021 AI Learning Data Construction Project" to discriminate echocardiography/electrocardiogram diseases.

Task II. Arrythmia on ECG datasets

0. Model

Resnet-based architecture.
Best AUC-ROC Score: 0.9986926250732517

1. Installation

1.1. Environment

Python >= 3.6

1.2. Requirements:

  • tensorflow >= 2.5
  • xmltodict
  • scikit-learn
  • matplotlib
  • numpy
pip install -r requirements.txt

2. Usage

2.1. Training

  1. Basic usage
python train.py -d electrocardiogram/data/train -s model.h5
  1. Training with 8 leads inputs, elevation adjustment, data augmentation and gqussian noises
python train.py -d electrocardiogram/data/train -s model.h5 -l 8 -v -a -n

To see more options:

python train.py -h
  • options:
    • -d, --data : File path of training data
    • -s, --save : File name for saving trained model (extension should be '.h5')
    • -b, --batch : Batch size (default=500)
    • -e, --epoch : Number of epochs (default=50)
    • -l, --lead : Number of leads to be trained (2/8/12) (default=2)
    • -v, --elevation : Option for adjusting elevation
    • -a, --augmentation : Option for data augmentation (stretching & amplifying)
    • -n, --noise : Option for adding noise on data

2.2. Evaluation

  1. Basic usage
python eval.py -d electrocardiogram/data/validation -m model.h5
  1. Evaluation with the best model
python eval.py -d electrocardiogram/data/validation -m best.h5
  1. Evaluation with 12 leads inputs and elevation adjustment
python eval.py -d electrocardiogram/data/validation -m model.h5 -l 12 -v

To see more options:

python eval.py -h
  • options:
    • -d, --data : File path of validation data
    • -m, --model : File name of saved model
    • -l, --lead : Number of leads being trained (default=2) (2/8/12)
    • -v, --elevation : Option for adjusting elevation

#Korean

심초음파/심전도 ai 모델 데이터톤 2021

이 경진대회는 "2021 인공지능 학습용 데이터 구축사업"의 일환으로 추진된 인공지능 학습용 심장질환 심초음파 및 심전도 데이터셋을 이용하여 심초음파/심전도 질환을 판별하는 AI 진단 모델링 경진대회입니다.

Task II. Arrythmia on ECG datasets

심전도 데이터셋을 활용한 부정맥 진단 AI 모델 공모(심전도 데이터셋을 활용한 부정맥 진단 AI 모델 개발)

0. 모델

Resnet 구조 기반의 Binary classification model.
Best AUC-ROC Score: 0.9986926250732517

1. 설치

1.1. 환경

Python >= 3.6

1.2. 필요한 패키지:

  • tensorflow >= 2.5
  • xmltodict
  • scikit-learn
  • matplotlib
  • numpy
pip install -r requirements.txt

2. 사용법

2.1. Training

  1. 기본 사용법 예시 (제출용)
python train.py -d electrocardiogram/data/train -s model.h5
  1. 8개 리드, 상하조정, 데이터 어그멘테이션, 노이즈 적용
python train.py -d electrocardiogram/data/train -s model.h5 -l 8 -v -a -n

To see more options:

python train.py -h
  • options:
    • -d, --data : 트레이닝 데이터 경로
    • -s, --save : 학습된 모델명 (확장자 .h5로 써줄 것)
    • -b, --batch : 배치 사이즈 (default=500)
    • -e, --epoch : 에포크 수 (default=50)
    • -l, --lead : 트레이닝에 쓸 리드 수 (2/8/12) (default=2)
    • -v, --elevation : 상하 조정 옵션
    • -a, --augmentation : 데이터 어그멘테이션 옵션 (stretching & amplifying)
    • -n, --noise : 가우시안 노이즈 적용 옵션

2.2. Evaluation

  1. 기본 사용법 예시
python eval.py -d electrocardiogram/data/validation -m model.h5
  1. 체출된 Best model 평가 (제출용)
python eval.py -d electrocardiogram/data/validation -m best.h5
  1. 12개 리드, 상하조정 적용
python eval.py -d electrocardiogram/data/validation -m model.h5 -l 12 -v

To see more options:

python eval.py -h
  • options:
    • -d, --data : 벨리데이션 데이터 경로
    • -m, --model : 불러올 모델 파일명
    • -l, --lead : 트레이닝된 리드 수 (2/8/12) (default=2)
    • -v, --elevation : 상하 조정 옵션
Owner
HY_Kim
CSer in SUNY Korea.
HY_Kim
PyTorch implementation of our method for adversarial attacks and defenses in hyperspectral image classification.

Self-Attention Context Network for Hyperspectral Image Classification PyTorch implementation of our method for adversarial attacks and defenses in hyp

22 Dec 02, 2022
This is an official implementation for the WTW Dataset in "Parsing Table Structures in the Wild " on table detection and table structure recognition.

WTW-Dataset This is an official implementation for the WTW Dataset in "Parsing Table Structures in the Wild " on ICCV 2021. Here, you can download the

109 Dec 29, 2022
Application of the L2HMC algorithm to simulations in lattice QCD.

l2hmc-qcd 📊 Slides Recent talk on Training Topological Samplers for Lattice Gauge Theory from the Machine Learning for High Energy Physics, on and of

Sam Foreman 37 Dec 14, 2022
[ICCV2021] Official code for "Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition"

CTR-GCN This repo is the official implementation for Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition. The pap

Yuxin Chen 148 Dec 16, 2022
This project provides an unsupervised framework for mining and tagging quality phrases on text corpora with pretrained language models (KDD'21).

UCPhrase: Unsupervised Context-aware Quality Phrase Tagging To appear on KDD'21...[pdf] This project provides an unsupervised framework for mining and

Xiaotao Gu 146 Dec 22, 2022
Unsupervised Video Interpolation using Cycle Consistency

Unsupervised Video Interpolation using Cycle Consistency Project | Paper | YouTube Unsupervised Video Interpolation using Cycle Consistency Fitsum A.

NVIDIA Corporation 100 Nov 30, 2022
STRIVE: Scene Text Replacement In Videos

STRIVE: Scene Text Replacement In Videos Dataset Types: RoboText SynthText RealWorld videos RoboText : Videos of texts collected using navigation robo

15 Jul 11, 2022
Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion"

DSPoint Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion" Coming soon, as soon as I finish a

Ziyao Zeng 14 Feb 26, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
Implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hashing by Maximizing Bit Entropy

Deep Unsupervised Image Hashing by Maximizing Bit Entropy This is the PyTorch implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hash

62 Dec 30, 2022
The final project of "Applying AI to 3D Medical Imaging Data" from "AI for Healthcare" nanodegree - Udacity.

Quantifying Hippocampus Volume for Alzheimer's Progression Background Alzheimer's disease (AD) is a progressive neurodegenerative disorder that result

Omar Laham 1 Jan 14, 2022
InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Jan 09, 2023
Spatial Contrastive Learning for Few-Shot Classification (SCL)

This repo contains the official implementation of Spatial Contrastive Learning for Few-Shot Classification (SCL), which presents of a novel contrastive learning method applied to few-shot image class

Yassine 34 Dec 25, 2022
GraPE is a Rust/Python library for high-performance Graph Processing and Embedding.

GraPE GraPE (Graph Processing and Embedding) is a fast graph processing and embedding library, designed to scale with big graphs and to run on both of

AnacletoLab 194 Dec 29, 2022
PyTorch implementation for the paper Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime

Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime Created by Prarthana Bhattacharyya. Disclaimer: This is n

Prarthana Bhattacharyya 5 Nov 08, 2022
Load What You Need: Smaller Multilingual Transformers for Pytorch and TensorFlow 2.0.

Smaller Multilingual Transformers This repository shares smaller versions of multilingual transformers that keep the same representations offered by t

Geotrend 79 Dec 28, 2022
Rotation Robust Descriptors

RoRD Rotation-Robust Descriptors and Orthographic Views for Local Feature Matching Project Page | Paper link Evaluation and Datasets MMA : Training on

Udit Singh Parihar 25 Nov 15, 2022
Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration

Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration Project Page | Paper Yifan Peng*, Suyeon Choi*, Jongh

Stanford Computational Imaging Lab 19 Dec 11, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

ISC-Track2-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 2. Required dependencies To begin with

Wenhao Wang 89 Jan 02, 2023