Supplementary code for the paper "Meta-Solver for Neural Ordinary Differential Equations" https://arxiv.org/abs/2103.08561

Overview

Meta-Solver for Neural Ordinary Differential Equations

Towards robust neural ODEs using parametrized solvers.

Main idea

Each Runge-Kutta (RK) solver with s stages and of the p-th order is defined by a table of coefficients (Butcher tableau). For s=p=2, s=p=3 and s=p=4 all coefficient in the table can be parametrized with no more than two variables [1].

Usually, during neural ODE training RK solver with fixed Butcher tableau is used, and only the right-hand side (RHS) function is trained. We propose to use the whole parametric family of RK solvers to improve robustness of neural ODEs.

Requirements

  • pytorch==1.7
  • apex==0.1 (for training)

Examples

For CIFAR-10 and MNIST demo, please, check examples folder.

Meta Solver Regimes

In the notebook examples/cifar10/Evaluate model.ipynb we show how to perform the forward pass through the Neural ODE using different types of Meta Solver regimes, namely

  • Standalone
  • Solver switching/smoothing
  • Solver ensembling
  • Model ensembling

In more details, usage of different regimes means

  • Standalone

    • Use one solver during inference.
    • This regime is applied in the training and testing stages.
  • Solver switching / smoothing

    • For each batch one solver is chosen from a group of solvers with finite (in switching regime) or infinite (in smoothing regime) number of candidates.
    • This regime is applied in the training stage
  • Solver ensembling

    • Use several solvers durung inference.
    • Outputs of ODE Block (obtained with different solvers) are averaged before propagating through the next layer.
    • This regime is applied in the training and testing stages.
  • Model ensembling

    • Use several solvers durung inference.
    • Model probabilites obtained via propagation with different solvers are averaged to get the final result.
    • This regime is applied in the training and testing stages.

Selected results

Different solver parameterizations yield different robustness

We have trained a neural ODE model several times, using different u values in parametrization of the 2-nd order Runge-Kutta solver. The image below depicts robust accuracies for the MNIST classification task. We use PGD attack (eps=0.3, lr=2/255 and iters=7). The mean values of robust accuracy (bold lines) and +- standard error mean (shaded region) computed across 9 random seeds are shown in this image.

Solver smoothing improves robustness

We compare results of neural ODE adversarial training on CIFAR-10 dataset with and without solver smoothing (using normal distribution with mean = 0 and sigma=0.0125). We choose 8-steps RK2 solver with u=0.5 for this experiment.

  • We perform training using FGSM random technique described in https://arxiv.org/abs/2001.03994 (with eps=8/255, alpha=10/255).
  • We use cyclic learning rate schedule with one cycle (36 epochs, max_lr=0.1, base_lr=1e-7).
  • We measure robust accuracy of resulting models after FGSM (eps=8/255) and PGD (eps=8/255, lr=2/255, iters=7) attacks.
  • We use premetanode10 architecture from sopa/src/models/odenet_cifar10/layers.py that has the following form Conv -> PreResNet block -> ODE block -> PreResNet block -> ODE block -> GeLU -> Average Pooling -> Fully Connected
  • We compute mean and standard error across 3 random seeds.

References

[1] Wanner, G., & Hairer, E. (1993). Solving ordinary differential equations I. Springer Berlin Heidelberg

Owner
Julia Gusak
Julia Gusak
Official implementation of the paper "Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering"

Light Field Networks Project Page | Paper | Data | Pretrained Models Vincent Sitzmann*, Semon Rezchikov*, William Freeman, Joshua Tenenbaum, Frédo Dur

Vincent Sitzmann 130 Dec 29, 2022
Code for the Shortformer model, from the paper by Ofir Press, Noah A. Smith and Mike Lewis.

Shortformer This repository contains the code and the final checkpoint of the Shortformer model. This file explains how to run our experiments on the

Ofir Press 138 Apr 15, 2022
A Peer-to-peer Platform for Secure, Privacy-preserving, Decentralized Data Science

PyGrid is a peer-to-peer network of data owners and data scientists who can collectively train AI models using PySyft. PyGrid is also the central serv

OpenMined 615 Jan 03, 2023
This is the official implementation code repository of Underwater Light Field Retention : Neural Rendering for Underwater Imaging (Accepted by CVPR Workshop2022 NTIRE)

Underwater Light Field Retention : Neural Rendering for Underwater Imaging (UWNR) (Accepted by CVPR Workshop2022 NTIRE) Authors: Tian Ye†, Sixiang Che

jmucsx 17 Dec 14, 2022
IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling

IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling This is my code, data and approach for the IEEE-CIS Technical Challen

3 Sep 18, 2022
[CVPR 2020] Local Class-Specific and Global Image-Level Generative Adversarial Networks for Semantic-Guided Scene Generation

Contents Local and Global GAN Cross-View Image Translation Semantic Image Synthesis Acknowledgments Related Projects Citation Contributions Collaborat

Hao Tang 131 Dec 07, 2022
Face Detection & Age Gender & Expression & Recognition

Face Detection & Age Gender & Expression & Recognition

Sajjad Ayobi 188 Dec 28, 2022
Lucid Sonic Dreams syncs GAN-generated visuals to music.

Lucid Sonic Dreams Lucid Sonic Dreams syncs GAN-generated visuals to music. By default, it uses NVLabs StyleGAN2, with pre-trained models lifted from

731 Jan 02, 2023
This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing.

Feedback Prize - Evaluating Student Writing This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing. The

Udbhav Bamba 41 Dec 14, 2022
This is the paddle code for SeBoW(Self-Born wiring for neural trees), a kind of neural tree born form a large search space

SeBoW: Self-Born Wiring for neural trees(PaddlePaddle version) This is the paddle code for SeBoW(Self-Born wiring for neural trees), a kind of neural

HollyLee 13 Dec 08, 2022
STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech

STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech Keon Lee, Ky

Keon Lee 114 Dec 12, 2022
Contrastively Disentangled Sequential Variational Audoencoder

Contrastively Disentangled Sequential Variational Audoencoder (C-DSVAE) Overview This is the implementation for our C-DSVAE, a novel self-supervised d

Junwen Bai 35 Dec 24, 2022
[CVPR 2022] Thin-Plate Spline Motion Model for Image Animation.

[CVPR2022] Thin-Plate Spline Motion Model for Image Animation Source code of the CVPR'2022 paper "Thin-Plate Spline Motion Model for Image Animation"

yoyo-nb 1.4k Dec 30, 2022
ACV is a python library that provides explanations for any machine learning model or data.

ACV is a python library that provides explanations for any machine learning model or data. It gives local rule-based explanations for any model or data and different Shapley Values for tree-based mod

Salim Amoukou 85 Dec 27, 2022
Simulator for FRC 2022 challenge: Rapid React

rrsim Simulator for FRC 2022 challenge: Rapid React out-1.mp4 Usage In order to run the simulator use the following: python3 rrsim.py [config_path] wh

1 Jan 18, 2022
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P

Qiming Hu 31 Dec 20, 2022
​TextWorld is a sandbox learning environment for the training and evaluation of reinforcement learning (RL) agents on text-based games.

TextWorld A text-based game generator and extensible sandbox learning environment for training and testing reinforcement learning (RL) agents. Also ch

Microsoft 983 Dec 23, 2022
Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation

SUO-SLAM This repository hosts the code for our CVPR 2022 paper "Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation". ArXiv li

Robot Perception & Navigation Group (RPNG) 97 Jan 03, 2023
Code for 1st place solution in Sleep AI Challenge SNU Hospital

Sleep AI Challenge SNU Hospital 2021 Code for 1st place solution for Sleep AI Challenge (Note that the code is not fully organized) Refer to the notio

Saewon Yang 13 Jan 03, 2022
Improving Factual Completeness and Consistency of Image-to-text Radiology Report Generation

Improving Factual Completeness and Consistency of Image-to-text Radiology Report Generation The reference code of Improving Factual Completeness and C

46 Dec 15, 2022