Supplementary code for the paper "Meta-Solver for Neural Ordinary Differential Equations" https://arxiv.org/abs/2103.08561

Overview

Meta-Solver for Neural Ordinary Differential Equations

Towards robust neural ODEs using parametrized solvers.

Main idea

Each Runge-Kutta (RK) solver with s stages and of the p-th order is defined by a table of coefficients (Butcher tableau). For s=p=2, s=p=3 and s=p=4 all coefficient in the table can be parametrized with no more than two variables [1].

Usually, during neural ODE training RK solver with fixed Butcher tableau is used, and only the right-hand side (RHS) function is trained. We propose to use the whole parametric family of RK solvers to improve robustness of neural ODEs.

Requirements

  • pytorch==1.7
  • apex==0.1 (for training)

Examples

For CIFAR-10 and MNIST demo, please, check examples folder.

Meta Solver Regimes

In the notebook examples/cifar10/Evaluate model.ipynb we show how to perform the forward pass through the Neural ODE using different types of Meta Solver regimes, namely

  • Standalone
  • Solver switching/smoothing
  • Solver ensembling
  • Model ensembling

In more details, usage of different regimes means

  • Standalone

    • Use one solver during inference.
    • This regime is applied in the training and testing stages.
  • Solver switching / smoothing

    • For each batch one solver is chosen from a group of solvers with finite (in switching regime) or infinite (in smoothing regime) number of candidates.
    • This regime is applied in the training stage
  • Solver ensembling

    • Use several solvers durung inference.
    • Outputs of ODE Block (obtained with different solvers) are averaged before propagating through the next layer.
    • This regime is applied in the training and testing stages.
  • Model ensembling

    • Use several solvers durung inference.
    • Model probabilites obtained via propagation with different solvers are averaged to get the final result.
    • This regime is applied in the training and testing stages.

Selected results

Different solver parameterizations yield different robustness

We have trained a neural ODE model several times, using different u values in parametrization of the 2-nd order Runge-Kutta solver. The image below depicts robust accuracies for the MNIST classification task. We use PGD attack (eps=0.3, lr=2/255 and iters=7). The mean values of robust accuracy (bold lines) and +- standard error mean (shaded region) computed across 9 random seeds are shown in this image.

Solver smoothing improves robustness

We compare results of neural ODE adversarial training on CIFAR-10 dataset with and without solver smoothing (using normal distribution with mean = 0 and sigma=0.0125). We choose 8-steps RK2 solver with u=0.5 for this experiment.

  • We perform training using FGSM random technique described in https://arxiv.org/abs/2001.03994 (with eps=8/255, alpha=10/255).
  • We use cyclic learning rate schedule with one cycle (36 epochs, max_lr=0.1, base_lr=1e-7).
  • We measure robust accuracy of resulting models after FGSM (eps=8/255) and PGD (eps=8/255, lr=2/255, iters=7) attacks.
  • We use premetanode10 architecture from sopa/src/models/odenet_cifar10/layers.py that has the following form Conv -> PreResNet block -> ODE block -> PreResNet block -> ODE block -> GeLU -> Average Pooling -> Fully Connected
  • We compute mean and standard error across 3 random seeds.

References

[1] Wanner, G., & Hairer, E. (1993). Solving ordinary differential equations I. Springer Berlin Heidelberg

Owner
Julia Gusak
Julia Gusak
HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022

HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022 [Project page | Video] Getting sta

51 Nov 29, 2022
Black box hyperparameter optimization made easy.

BBopt BBopt aims to provide the easiest hyperparameter optimization you'll ever do. Think of BBopt like Keras (back when Theano was still a thing) for

Evan Hubinger 70 Nov 03, 2022
The personal repository of the work: *DanceNet3D: Music Based Dance Generation with Parametric Motion Transformer*.

DanceNet3D The personal repository of the work: DanceNet3D: Music Based Dance Generation with Parametric Motion Transformer. Dataset and Results Pleas

南嘉Nanga 36 Dec 21, 2022
Models, datasets and tools for Facial keypoints detection

Template for Data Science Project This repo aims to give a robust starting point to any Data Science related project. It contains readymade tools setu

girafe.ai 1 Feb 11, 2022
Easy genetic ancestry predictions in Python

ezancestry Easily visualize your direct-to-consumer genetics next to 2500+ samples from the 1000 genomes project. Evaluate the performance of a custom

Kevin Arvai 38 Jan 02, 2023
Pull sensitive data from users on windows including discord tokens and chrome data.

⭐ For a 🍪 Pegasus Pull sensitive data from users on windows including discord tokens and chrome data. Features 🟩 Discord tokens 🟩 Geolocation data

Addi 44 Dec 31, 2022
Count GitHub Stars ⭐

Count GitHub Stars per Day ⭐ Track GitHub stars per day over a date range to measure the open-source popularity of different repositories. Requirement

Ultralytics 20 Nov 20, 2022
Code in PyTorch for the convex combination linear IAF and the Householder Flow, J.M. Tomczak & M. Welling

VAE with Volume-Preserving Flows This is a PyTorch implementation of two volume-preserving flows as described in the following papers: Tomczak, J. M.,

Jakub Tomczak 87 Dec 26, 2022
Fast, modular reference implementation of Instance Segmentation and Object Detection algorithms in PyTorch.

Faster R-CNN and Mask R-CNN in PyTorch 1.0 maskrcnn-benchmark has been deprecated. Please see detectron2, which includes implementations for all model

Facebook Research 9k Jan 04, 2023
Deepfake Scanner by Deepware.

Deepware Scanner (CLI) This repository contains the command-line deepfake scanner tool with the pre-trained models that are currently used at deepware

deepware 110 Jan 02, 2023
Neural Magic Eye: Learning to See and Understand the Scene Behind an Autostereogram, arXiv:2012.15692.

Neural Magic Eye Preprint | Project Page | Colab Runtime Official PyTorch implementation of the preprint paper "NeuralMagicEye: Learning to See and Un

Zhengxia Zou 56 Jul 15, 2022
Jingju baseline - A baseline model of our project of Beijing opera script generation

Jingju Baseline It is a baseline of our project about Beijing opera script gener

midon 1 Jan 14, 2022
Mixed Transformer UNet for Medical Image Segmentation

MT-UNet Update 2022/01/05 By another round of training based on previous weights, our model also achieved a better performance on ACDC (91.61% DSC). W

dotman 92 Dec 25, 2022
To build a regression model to predict the concrete compressive strength based on the different features in the training data.

Cement-Strength-Prediction Problem Statement To build a regression model to predict the concrete compressive strength based on the different features

Ashish Kumar 4 Jun 11, 2022
Experiments and examples converting Transformers to ONNX

Experiments and examples converting Transformers to ONNX This repository containes experiments and examples on converting different Transformers to ON

Philipp Schmid 4 Dec 24, 2022
The implementation of the algorithm in the paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020.

DS3L This is the code for paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020. Setups The code is implem

Guolz 36 Oct 19, 2022
An example of time series augmentation methods with Keras

Time Series Augmentation This is a collection of time series data augmentation methods and an example use using Keras. News 2020/04/16: Repository Cre

九州大学 ヒューマンインタフェース研究室 229 Jan 02, 2023
A simplified framework and utilities for PyTorch

Here is Poutyne. Poutyne is a simplified framework for PyTorch and handles much of the boilerplating code needed to train neural networks. Use Poutyne

GRAAL/GRAIL 534 Dec 17, 2022
Codebase for the solution that won first place and was awarded the most human-like agent in the 2021 NeurIPS Competition MineRL BASALT Challenge.

KAIROS MineRL BASALT Codebase for the solution that won first place and was awarded the most human-like agent in the 2021 NeurIPS Competition MineRL B

Vinicius G. Goecks 37 Oct 30, 2022
A Collection of Papers and Codes for ICCV2021 Low Level Vision and Image Generation

A Collection of Papers and Codes for ICCV2021 Low Level Vision and Image Generation

196 Jan 05, 2023