Preparation material for Dropbox interviews

Overview

Dropbox-Onsite-Interviews

A guide for the Dropbox onsite interview!

The Dropbox interview question bank is very small. The bank has been in a Chinese forum for many years now, and we would like to make it accessible to everyone so that everyone will have an equal opportunity to prepare for the Dropbox onsite interview!

https://1o24bbs.com/t/topic/1381

Backup link: https://web.archive.org/web/20210224003004/https://1o24bbs.com/t/topic/1381


Behavioral Questions:

Talk about an impactful project that you led.

  • Teams that you collaborated with.
  • Convincing others to take action.
  • A tough decision that you had to make during that project.

A critical piece of feedback that you received from someone and what you did after that.

An important piece of feedback that you gave to someone else.

A conflict that you had with someone else.

How do you contribute to diversity and inclusion?


We do not ask for references and we do not check for references.


Coding and System Design Tips

As always, you must talk your way through the problem and explain your reasoning. You should ALWAYS talk about performance (system performance for system design and time/space complexity for the coding problems) and talk about testing, even if the interviewer does not prompt you to.

Coding Question List:

  1. Id Allocator - Create a class that can allocate and release ids. The image in the packet is wrong. Please see this image.

This question is EXTREMELY popular and is asked in most onsite interviews, even if you're not a recent graduate.

Solution

  1. Download File / BitTorrent - Create a class that will receive pieces of a file and tell whether the file can be assembled from the pieces.

This question is mostly for new graduates/phone screens.

  1. Game of Life - Conway's Game of Life - Problem on LeetCode

This question is EXTREMELY popular for phone screens.

Solution

  1. Hit Counter - Design a class to count the hits received by a webpage

This question is mostly on phone screens.

Solution

  1. Web Crawler - Design a web crawler, first single-threaded, then multithreaded.

This question is EXTREMELY popular for onsite interviews.

Solution

  1. Token Bucket

This question is somewhat popular for onsite interviews. It has a multi-threaded component.

Solution

  1. Search the DOM

This question is somewhat popular for roles with a large frontend component.

Question

  1. Space Panorama

Create an API to read and write files and maintain access to the least-recently written file. Then scale it up to a pool of servers.

Solution

  1. Phone Number / Dictionary - Given a phone number, consider all the words that could be made on a T9 keypad. Return all of those words that can be found in a dictionary of specific words.

This question is sometimes asked to college students and sometimes asked in phone screens. It isn't asked a lot in onsites.

Solution

  1. Sharpness Value - This question is usually phrased like "find the minimum value along all maximal paths". It's a dynamic programming question.

Occasionally asked in phone screens. Might be asked in onsites for new hires.

Solution

  1. Find Byte Pattern in a File - Determine whether a pattern of bytes occurs in a file. You need to understand the Rabin-Karp style rolling hash to do well.

Somewhat frequently asked in onsite interviews. Might be asked in phone screens.

Solution

  1. Count and Say - LeetCode. Follow up - what if it's a stream of characters?

Asked to college interns.

Solution

  1. Number of Islands / Number of Connected Components - Find the number of connected components in a grid. Leetcode

Mainly asked to college interns.

Solution

  1. Combination Sum / Bottles of Soda / Coin Change - Find all distinct combinations of soda bottles that add up to a target amount of soda. LeetCode

Mainly asked to IC1 candidates.

Solution

  1. Find Duplicate Files - Given the root of a folder tree, find all the duplicate files and return a list of the collections of duplicate files. LeetCode

Somewhat popular in phone screens. Less common in onsites.

Solution

OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark

Introduction English | 简体中文 MMAction2 is an open-source toolbox for video understanding based on PyTorch. It is a part of the OpenMMLab project. The m

OpenMMLab 2.7k Jan 07, 2023
[NeurIPS'21] Shape As Points: A Differentiable Poisson Solver

Shape As Points (SAP) Paper | Project Page | Short Video (6 min) | Long Video (12 min) This repository contains the implementation of the paper: Shape

394 Dec 30, 2022
SPT_LSA_ViT - Implementation for Visual Transformer for Small-size Datasets

Vision Transformer for Small-Size Datasets Seung Hoon Lee and Seunghyun Lee and Byung Cheol Song | Paper Inha University Abstract Recently, the Vision

Lee SeungHoon 87 Jan 01, 2023
MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity

MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity Introduction The 3D LiDAR place recognition aim

16 Dec 08, 2022
Very Deep Convolutional Networks for Large-Scale Image Recognition

pytorch-vgg Some scripts to convert the VGG-16 and VGG-19 models [1] from Caffe to PyTorch. The converted models can be used with the PyTorch model zo

Justin Johnson 217 Dec 05, 2022
Official PyTorch implementation of the paper "Graph-based Generative Face Anonymisation with Pose Preservation" in ICIAP 2021

Contents AnonyGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evaluation Acknowledgments Citat

Nicola Dall'Asen 10 May 24, 2022
Group project for MFIN7036. Our goal is to predict firm profitability with text-based competition measures.

NLP_0-project Group project for MFIN7036. Our goal is to predict firm profitability with text-based competition measures1. We are a "democratic" and c

3 Mar 16, 2022
MoveNetを用いたPythonでの姿勢推定のデモ

MoveNet-Python-Example MoveNetのPythonでの動作サンプルです。 ONNXに変換したモデルも同梱しています。変換自体を試したい方はMoveNet_tf2onnx.ipynbを使用ください。 2021/08/24時点でTensorFlow Hubで提供されている以下モデ

KazuhitoTakahashi 38 Dec 17, 2022
GluonMM is a library of transformer models for computer vision and multi-modality research

GluonMM is a library of transformer models for computer vision and multi-modality research. It contains reference implementations of widely adopted baseline models and also research work from Amazon

42 Dec 02, 2022
Nodule Generation Algorithm Baseline and template code for node21 generation track

Nodule Generation Algorithm This codebase implements a simple baseline model, by following the main steps in the paper published by Litjens et al. for

node21challenge 10 Apr 21, 2022
Rotation-Only Bundle Adjustment

ROBA: Rotation-Only Bundle Adjustment Paper, Video, Poster, Presentation, Supplementary Material In this repository, we provide the implementation of

Seong 51 Nov 29, 2022
Visual Tracking by TridenAlign and Context Embedding

Visual Tracking by TridentAlign and Context Embedding (TACT) Test code for "Visual Tracking by TridentAlign and Context Embedding" Janghoon Choi, Juns

Janghoon Choi 32 Aug 25, 2021
An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wheat Detection (2021).

Global-Wheat-Detection An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wh

Chuxin Wang 11 Sep 25, 2022
Machine learning and Deep learning models, deploy on telegram (the best social media)

Semi Intelligent BOT The project involves : Classifying fake news Classifying objects such as aeroplane, automobile, bird, cat, deer, dog, frog, horse

MohammadReza Norouzi 5 Mar 06, 2022
A 3D Dense mapping backend library of SLAM based on taichi-Lang designed for the aerial swarm.

TaichiSLAM This project is a 3D Dense mapping backend library of SLAM based Taichi-Lang, designed for the aerial swarm. Intro Taichi is an efficient d

XuHao 230 Dec 19, 2022
Relaxed-machines - explorations in neuro-symbolic differentiable interpreters

Relaxed Machines Explorations in neuro-symbolic differentiable interpreters. Baby steps: inc_stop Libraries JAX Haiku Optax Resources Chapter 3 (∂4: A

Nada Amin 6 Feb 02, 2022
A large-scale database for graph representation learning

A large-scale database for graph representation learning

Scott Freitas 29 Nov 25, 2022
Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion"

DSPoint Official implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion". Paper link: https://arxiv.org/abs/2111.10

Ziyao Zeng 14 Feb 26, 2022
PyTorch Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

pytorch-fcn PyTorch implementation of Fully Convolutional Networks. Requirements pytorch = 0.2.0 torchvision = 0.1.8 fcn = 6.1.5 Pillow scipy tqdm

Kentaro Wada 1.6k Jan 07, 2023
TabNet for fastai

TabNet for fastai This is an adaptation of TabNet (Attention-based network for tabular data) for fastai (=2.0) library. The original paper https://ar

Mikhail Grankin 116 Oct 21, 2022