CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

Related tags

Deep LearningCDTrans
Overview

CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation [arxiv]

This is the official repository for CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

Introduction

Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a labeled source domain to a different unlabeled target domain. Most existing UDA methods focus on learning domain-invariant feature representation, either from the domain level or category level, using convolution neural networks (CNNs)-based frameworks. With the success of Transformer in various tasks, we find that the cross-attention in Transformer is robust to the noisy input pairs for better feature alignment, thus in this paper Transformer is adopted for the challenging UDA task. Specifically, to generate accurate input pairs, we design a two-way center-aware labeling algorithm to produce pseudo labels for target samples. Along with the pseudo labels, a weight-sharing triple-branch transformer framework is proposed to apply self-attention and cross-attention for source/target feature learning and source-target domain alignment, respectively. Such design explicitly enforces the framework to learn discriminative domain-specific and domain-invariant representations simultaneously. The proposed method is dubbed CDTrans (cross-domain transformer), and it provides one of the first attempts to solve UDA tasks with a pure transformer solution. Extensive experiments show that our proposed method achieves the best performance on all public UDA datasets including Office-Home, Office-31, VisDA-2017, and DomainNet.

framework

Results

Table 1 [UDA results on Office-31]

Methods Avg. A->D A->W D->A D->W W->A W->D
Baseline(DeiT-S) 86.7 87.6 86.9 74.9 97.7 73.5 99.6
model model model
CDTrans(DeiT-S) 90.4 94.6 93.5 78.4 98.2 78 99.6
model model model model model model
Baseline(DeiT-B) 88.8 90.8 90.4 76.8 98.2 76.4 100
model model model
CDTrans(DeiT-B) 92.6 97 96.7 81.1 99 81.9 100
model model model model model model

Table 2 [UDA results on Office-Home]

Methods Avg. Ar->Cl Ar->Pr Ar->Re Cl->Ar Cl->Pr Cl->Re Pr->Ar Pr->Cl Pr->Re Re->Ar Re->Cl Re->Pr
Baseline(DeiT-S) 69.8 55.6 73 79.4 70.6 72.9 76.3 67.5 51 81 74.5 53.2 82.7
model model model model
CDTrans(DeiT-S) 74.7 60.6 79.5 82.4 75.6 81.0 82.3 72.5 56.7 84.4 77.0 59.1 85.5
model model model model model model model model model model model model
Baseline(DeiT-B) 74.8 61.8 79.5 84.3 75.4 78.8 81.2 72.8 55.7 84.4 78.3 59.3 86
model model model model
CDTrans(DeiT-B) 80.5 68.8 85 86.9 81.5 87.1 87.3 79.6 63.3 88.2 82 66 90.6
model model model model model model model model model model model model

Table 3 [UDA results on VisDA-2017]

Methods Per-class plane bcycl bus car horse knife mcycl person plant sktbrd train truck
Baseline(DeiT-B) 67.3 (model) 98.1 48.1 84.6 65.2 76.3 59.4 94.5 11.8 89.5 52.2 94.5 34.1
CDTrans(DeiT-B) 88.4 (model) 97.7 86.39 86.87 83.33 97.76 97.16 95.93 84.08 97.93 83.47 94.59 55.3

Table 4 [UDA results on DomainNet]

Base-S clp info pnt qdr rel skt Avg. CDTrans-S clp info pnt qdr rel skt Avg.
clp - 21.2 44.2 15.3 59.9 46.0 37.3 clp - 25.3 52.5 23.2 68.3 53.2 44.5
model model model model model model model
info 36.8 - 39.4 5.4 52.1 32.6 33.3 info 47.6 - 48.3 9.9 62.8 41.1 41.9
model model model model model model model
pnt 47.1 21.7 - 5.7 60.2 39.9 34.9 pnt 55.4 24.5 - 11.7 67.4 48.0 41.4
model model model model model model model
qdr 25.0 3.3 10.4 - 18.8 14.0 14.3 qdr 36.6 5.3 19.3 - 33.8 22.7 23.5
model model model model model model model
rel 54.8 23.9 52.6 7.4 - 40.1 35.8 rel 61.5 28.1 56.8 12.8 - 47.2 41.3
model model model model model model model
skt 55.6 18.6 42.7 14.9 55.7 - 37.5 skt 64.3 26.1 53.2 23.9 66.2 - 46.7
model model model model model model model
Avg. 43.9 17.7 37.9 9.7 49.3 34.5 32.2 Avg. 53.08 21.86 46.02 16.3 59.7 42.44 39.9
Base-B clp info pnt qdr rel skt Avg. CDTrans-B clp info pnt qdr rel skt Avg.
clp - 24.2 48.9 15.5 63.9 50.7 40.6 clp - 29.4 57.2 26.0 72.6 58.1 48.7
model model model model model model model
info 43.5 - 44.9 6.5 58.8 37.6 38.3 info 57.0 - 54.4 12.8 69.5 48.4 48.4
model model model model model model model
pnt 52.8 23.3 - 6.6 64.6 44.5 38.4 pnt 62.9 27.4 - 15.8 72.1 53.9 46.4
model model model model model model model
qdr 31.8 6.1 15.6 - 23.4 18.9 19.2 qdr 44.6 8.9 29.0 - 42.6 28.5 30.7
model model model model model model model
rel 58.9 26.3 56.7 9.1 - 45.0 39.2 rel 66.2 31.0 61.5 16.2 - 52.9 45.6
model model model model model model model
skt 60.0 21.1 48.4 16.6 61.7 - 41.6 skt 69.0 29.6 59.0 27.2 72.5 - 51.5
model model model model model model model
Avg. 49.4 20.2 42.9 10.9 54.5 39.3 36.2 Avg. 59.9 25.3 52.2 19.6 65.9 48.4 45.2

Requirements

Installation

pip install -r requirements.txt
(Python version is the 3.7 and the GPU is the V100 with cuda 10.1, cudatoolkit 10.1)

Prepare Datasets

Download the UDA datasets Office-31, Office-Home, VisDA-2017, DomainNet

Then unzip them and rename them under the directory like follow: (Note that each dataset floader needs to make sure that it contains the txt file that contain the path and lable of the picture, which is already in data/the_dataset of this project.)

data
├── OfficeHomeDataset
│   │── class_name
│   │   └── images
│   └── *.txt
├── domainnet
│   │── class_name
│   │   └── images
│   └── *.txt
├── office31
│   │── class_name
│   │   └── images
│   └── *.txt
├── visda
│   │── train
│   │   │── class_name
│   │   │   └── images
│   │   └── *.txt 
│   └── validation
│       │── class_name
│       │   └── images
│       └── *.txt 

Prepare DeiT-trained Models

For fair comparison in the pre-training data set, we use the DeiT parameter init our model based on ViT. You need to download the ImageNet pretrained transformer model : DeiT-Small, DeiT-Base and move them to the ./data/pretrainModel directory.

Training

We utilize 1 GPU for pre-training and 2 GPUs for UDA, each with 16G of memory.

Scripts.

Command input paradigm

bash scripts/[pretrain/uda]/[office31/officehome/visda/domainnet]/run_*.sh [deit_base/deit_small]

For example

DeiT-Base scripts

# Office-31     Source: Amazon   ->  Target: Dslr, Webcam
bash scripts/pretrain/office31/run_office_amazon.sh deit_base
bash scripts/uda/office31/run_office_amazon.sh deit_base

#Office-Home    Source: Art      ->  Target: Clipart, Product, Real_World
bash scripts/pretrain/officehome/run_officehome_Ar.sh deit_base
bash scripts/uda/officehome/run_officehome_Ar.sh deit_base

# VisDA-2017    Source: train    ->  Target: validation
bash scripts/pretrain/visda/run_visda.sh deit_base
bash scripts/uda/visda/run_visda.sh deit_base

# DomainNet     Source: Clipart  ->  Target: painting, quickdraw, real, sketch, infograph
bash scripts/pretrain/domainnet/run_domainnet_clp.sh deit_base
bash scripts/uda/domainnet/run_domainnet_clp.sh deit_base

DeiT-Small scripts Replace deit_base with deit_small to run DeiT-Small results. An example of training on office-31 is as follows:

# Office-31     Source: Amazon   ->  Target: Dslr, Webcam
bash scripts/pretrain/office31/run_office_amazon.sh deit_small
bash scripts/uda/office31/run_office_amazon.sh deit_small

Evaluation

# For example VisDA-2017
python test.py --config_file 'configs/uda.yml' MODEL.DEVICE_ID "('0')" TEST.WEIGHT "('../logs/uda/vit_base/visda/transformer_best_model.pth')" DATASETS.NAMES 'VisDA' DATASETS.NAMES2 'VisDA' OUTPUT_DIR '../logs/uda/vit_base/visda/' DATASETS.ROOT_TRAIN_DIR './data/visda/train/train_image_list.txt' DATASETS.ROOT_TRAIN_DIR2 './data/visda/train/train_image_list.txt' DATASETS.ROOT_TEST_DIR './data/visda/validation/valid_image_list.txt'  

Acknowledgement

Codebase from TransReID

A collection of resources, problems, explanations and concepts that are/were important during my Data Science journey

Data Science Gurukul List of resources, interview questions, concepts I use for my Data Science work. Topics: Basics of Programming with Python + Unde

Smaranjit Ghose 10 Oct 25, 2022
Code to reproduce results from the paper "AmbientGAN: Generative models from lossy measurements"

AmbientGAN: Generative models from lossy measurements This repository provides code to reproduce results from the paper AmbientGAN: Generative models

Ashish Bora 87 Oct 19, 2022
A basic reminder tool written in Python.

A simple Python Reminder Here's a basic reminder tool written in Python that speaks to the user and sends a notification. Run pip3 install pyttsx3 w

Sachit Yadav 4 Feb 05, 2022
A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation

Paper Khoi Nguyen, Sinisa Todorovic "A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation", accepted to ICCV 2021 Our code is mai

Khoi Nguyen 5 Aug 14, 2022
Process JSON files for neural recording sessions using Medtronic's BrainSense Percept PC neurostimulator

percept_processing This code processes JSON files for streamed neural data using Medtronic's Percept PC neurostimulator with BrainSense Technology for

Maria Olaru 3 Jun 06, 2022
An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow implementation of SERank model. The code is developed based on TF-Ranking.

SERank An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow

Zhihu 44 Oct 20, 2022
Brain tumor detection using Convolution-Neural Network (CNN)

Detect and Classify Brain Tumor using CNN. A system performing detection and classification by using Deep Learning Algorithms using Convolution-Neural Network (CNN).

assia 1 Feb 07, 2022
You can draw the corresponding bounding box into the image and save it according to the result file (txt format) run by the tracker.

You can draw the corresponding bounding box into the image and save it according to the result file (txt format) run by the tracker.

Huiyiqianli 42 Dec 06, 2022
Vanilla and Prototypical Networks with Random Weights for image classification on Omniglot and mini-ImageNet. Made with Python3.

vanilla-rw-protonets-project Vanilla Prototypical Networks and PNs with Random Weights for image classification on Omniglot and mini-ImageNet. Made wi

Giovani Candido 8 Aug 31, 2022
Ganilla - Official Pytorch implementation of GANILLA

GANILLA We provide PyTorch implementation for: GANILLA: Generative Adversarial Networks for Image to Illustration Translation. Paper Arxiv Updates (Fe

Samet Hi 462 Dec 05, 2022
How to Learn a Domain Adaptive Event Simulator? ACM MM, 2021

LETGAN How to Learn a Domain Adaptive Event Simulator? ACM MM 2021 Running Environment: pytorch=1.4, 1 NVIDIA-1080TI. More details can be found in pap

CVTEAM 4 Sep 20, 2022
Solving reinforcement learning tasks which require language and vision

Multimodal Reinforcement Learning JAX implementations of the following multimodal reinforcement learning approaches. Dual-coding Episodic Memory from

Henry Prior 31 Feb 26, 2022
This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

AdapterHub 18 Dec 09, 2022
MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tricks

MEAL-V2 This is the official pytorch implementation of our paper: "MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tric

Zhiqiang Shen 653 Dec 19, 2022
Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel

Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel This repository is the official PyTorch implementation of BSRDM w

Zongsheng Yue 69 Jan 05, 2023
Self-Regulated Learning for Egocentric Video Activity Anticipation

Self-Regulated Learning for Egocentric Video Activity Anticipation Introduction This is a Pytorch implementation of the model described in our paper:

qzhb 13 Sep 23, 2022
Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Pytorch Lightning 1k Jan 06, 2023
[NeurIPS 2021] Official implementation of paper "Learning to Simulate Self-driven Particles System with Coordinated Policy Optimization".

Code for Coordinated Policy Optimization Webpage | Code | Paper | Talk (English) | Talk (Chinese) Hi there! This is the source code of the paper “Lear

DeciForce: Crossroads of Machine Perception and Autonomy 81 Dec 19, 2022
TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction

TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction TSDF++ is a novel multi-object TSDF formulation that can encode mult

ETHZ ASL 130 Dec 29, 2022
Learning from Synthetic Shadows for Shadow Detection and Removal [Inoue+, IEEE TCSVT 2020].

Learning from Synthetic Shadows for Shadow Detection and Removal (IEEE TCSVT 2020) Overview This repo is for the paper "Learning from Synthetic Shadow

Naoto Inoue 67 Dec 28, 2022