CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

Related tags

Deep LearningCDTrans
Overview

CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation [arxiv]

This is the official repository for CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

Introduction

Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a labeled source domain to a different unlabeled target domain. Most existing UDA methods focus on learning domain-invariant feature representation, either from the domain level or category level, using convolution neural networks (CNNs)-based frameworks. With the success of Transformer in various tasks, we find that the cross-attention in Transformer is robust to the noisy input pairs for better feature alignment, thus in this paper Transformer is adopted for the challenging UDA task. Specifically, to generate accurate input pairs, we design a two-way center-aware labeling algorithm to produce pseudo labels for target samples. Along with the pseudo labels, a weight-sharing triple-branch transformer framework is proposed to apply self-attention and cross-attention for source/target feature learning and source-target domain alignment, respectively. Such design explicitly enforces the framework to learn discriminative domain-specific and domain-invariant representations simultaneously. The proposed method is dubbed CDTrans (cross-domain transformer), and it provides one of the first attempts to solve UDA tasks with a pure transformer solution. Extensive experiments show that our proposed method achieves the best performance on all public UDA datasets including Office-Home, Office-31, VisDA-2017, and DomainNet.

framework

Results

Table 1 [UDA results on Office-31]

Methods Avg. A->D A->W D->A D->W W->A W->D
Baseline(DeiT-S) 86.7 87.6 86.9 74.9 97.7 73.5 99.6
model model model
CDTrans(DeiT-S) 90.4 94.6 93.5 78.4 98.2 78 99.6
model model model model model model
Baseline(DeiT-B) 88.8 90.8 90.4 76.8 98.2 76.4 100
model model model
CDTrans(DeiT-B) 92.6 97 96.7 81.1 99 81.9 100
model model model model model model

Table 2 [UDA results on Office-Home]

Methods Avg. Ar->Cl Ar->Pr Ar->Re Cl->Ar Cl->Pr Cl->Re Pr->Ar Pr->Cl Pr->Re Re->Ar Re->Cl Re->Pr
Baseline(DeiT-S) 69.8 55.6 73 79.4 70.6 72.9 76.3 67.5 51 81 74.5 53.2 82.7
model model model model
CDTrans(DeiT-S) 74.7 60.6 79.5 82.4 75.6 81.0 82.3 72.5 56.7 84.4 77.0 59.1 85.5
model model model model model model model model model model model model
Baseline(DeiT-B) 74.8 61.8 79.5 84.3 75.4 78.8 81.2 72.8 55.7 84.4 78.3 59.3 86
model model model model
CDTrans(DeiT-B) 80.5 68.8 85 86.9 81.5 87.1 87.3 79.6 63.3 88.2 82 66 90.6
model model model model model model model model model model model model

Table 3 [UDA results on VisDA-2017]

Methods Per-class plane bcycl bus car horse knife mcycl person plant sktbrd train truck
Baseline(DeiT-B) 67.3 (model) 98.1 48.1 84.6 65.2 76.3 59.4 94.5 11.8 89.5 52.2 94.5 34.1
CDTrans(DeiT-B) 88.4 (model) 97.7 86.39 86.87 83.33 97.76 97.16 95.93 84.08 97.93 83.47 94.59 55.3

Table 4 [UDA results on DomainNet]

Base-S clp info pnt qdr rel skt Avg. CDTrans-S clp info pnt qdr rel skt Avg.
clp - 21.2 44.2 15.3 59.9 46.0 37.3 clp - 25.3 52.5 23.2 68.3 53.2 44.5
model model model model model model model
info 36.8 - 39.4 5.4 52.1 32.6 33.3 info 47.6 - 48.3 9.9 62.8 41.1 41.9
model model model model model model model
pnt 47.1 21.7 - 5.7 60.2 39.9 34.9 pnt 55.4 24.5 - 11.7 67.4 48.0 41.4
model model model model model model model
qdr 25.0 3.3 10.4 - 18.8 14.0 14.3 qdr 36.6 5.3 19.3 - 33.8 22.7 23.5
model model model model model model model
rel 54.8 23.9 52.6 7.4 - 40.1 35.8 rel 61.5 28.1 56.8 12.8 - 47.2 41.3
model model model model model model model
skt 55.6 18.6 42.7 14.9 55.7 - 37.5 skt 64.3 26.1 53.2 23.9 66.2 - 46.7
model model model model model model model
Avg. 43.9 17.7 37.9 9.7 49.3 34.5 32.2 Avg. 53.08 21.86 46.02 16.3 59.7 42.44 39.9
Base-B clp info pnt qdr rel skt Avg. CDTrans-B clp info pnt qdr rel skt Avg.
clp - 24.2 48.9 15.5 63.9 50.7 40.6 clp - 29.4 57.2 26.0 72.6 58.1 48.7
model model model model model model model
info 43.5 - 44.9 6.5 58.8 37.6 38.3 info 57.0 - 54.4 12.8 69.5 48.4 48.4
model model model model model model model
pnt 52.8 23.3 - 6.6 64.6 44.5 38.4 pnt 62.9 27.4 - 15.8 72.1 53.9 46.4
model model model model model model model
qdr 31.8 6.1 15.6 - 23.4 18.9 19.2 qdr 44.6 8.9 29.0 - 42.6 28.5 30.7
model model model model model model model
rel 58.9 26.3 56.7 9.1 - 45.0 39.2 rel 66.2 31.0 61.5 16.2 - 52.9 45.6
model model model model model model model
skt 60.0 21.1 48.4 16.6 61.7 - 41.6 skt 69.0 29.6 59.0 27.2 72.5 - 51.5
model model model model model model model
Avg. 49.4 20.2 42.9 10.9 54.5 39.3 36.2 Avg. 59.9 25.3 52.2 19.6 65.9 48.4 45.2

Requirements

Installation

pip install -r requirements.txt
(Python version is the 3.7 and the GPU is the V100 with cuda 10.1, cudatoolkit 10.1)

Prepare Datasets

Download the UDA datasets Office-31, Office-Home, VisDA-2017, DomainNet

Then unzip them and rename them under the directory like follow: (Note that each dataset floader needs to make sure that it contains the txt file that contain the path and lable of the picture, which is already in data/the_dataset of this project.)

data
├── OfficeHomeDataset
│   │── class_name
│   │   └── images
│   └── *.txt
├── domainnet
│   │── class_name
│   │   └── images
│   └── *.txt
├── office31
│   │── class_name
│   │   └── images
│   └── *.txt
├── visda
│   │── train
│   │   │── class_name
│   │   │   └── images
│   │   └── *.txt 
│   └── validation
│       │── class_name
│       │   └── images
│       └── *.txt 

Prepare DeiT-trained Models

For fair comparison in the pre-training data set, we use the DeiT parameter init our model based on ViT. You need to download the ImageNet pretrained transformer model : DeiT-Small, DeiT-Base and move them to the ./data/pretrainModel directory.

Training

We utilize 1 GPU for pre-training and 2 GPUs for UDA, each with 16G of memory.

Scripts.

Command input paradigm

bash scripts/[pretrain/uda]/[office31/officehome/visda/domainnet]/run_*.sh [deit_base/deit_small]

For example

DeiT-Base scripts

# Office-31     Source: Amazon   ->  Target: Dslr, Webcam
bash scripts/pretrain/office31/run_office_amazon.sh deit_base
bash scripts/uda/office31/run_office_amazon.sh deit_base

#Office-Home    Source: Art      ->  Target: Clipart, Product, Real_World
bash scripts/pretrain/officehome/run_officehome_Ar.sh deit_base
bash scripts/uda/officehome/run_officehome_Ar.sh deit_base

# VisDA-2017    Source: train    ->  Target: validation
bash scripts/pretrain/visda/run_visda.sh deit_base
bash scripts/uda/visda/run_visda.sh deit_base

# DomainNet     Source: Clipart  ->  Target: painting, quickdraw, real, sketch, infograph
bash scripts/pretrain/domainnet/run_domainnet_clp.sh deit_base
bash scripts/uda/domainnet/run_domainnet_clp.sh deit_base

DeiT-Small scripts Replace deit_base with deit_small to run DeiT-Small results. An example of training on office-31 is as follows:

# Office-31     Source: Amazon   ->  Target: Dslr, Webcam
bash scripts/pretrain/office31/run_office_amazon.sh deit_small
bash scripts/uda/office31/run_office_amazon.sh deit_small

Evaluation

# For example VisDA-2017
python test.py --config_file 'configs/uda.yml' MODEL.DEVICE_ID "('0')" TEST.WEIGHT "('../logs/uda/vit_base/visda/transformer_best_model.pth')" DATASETS.NAMES 'VisDA' DATASETS.NAMES2 'VisDA' OUTPUT_DIR '../logs/uda/vit_base/visda/' DATASETS.ROOT_TRAIN_DIR './data/visda/train/train_image_list.txt' DATASETS.ROOT_TRAIN_DIR2 './data/visda/train/train_image_list.txt' DATASETS.ROOT_TEST_DIR './data/visda/validation/valid_image_list.txt'  

Acknowledgement

Codebase from TransReID

3DIAS: 3D Shape Reconstruction with Implicit Algebraic Surfaces (ICCV 2021)

3DIAS_Pytorch This repository contains the official code to reproduce the results from the paper: 3DIAS: 3D Shape Reconstruction with Implicit Algebra

Mohsen Yavartanoo 21 Dec 12, 2022
S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural Networks via Guided Distribution Calibration (CVPR 2021)

S2-BNN (Self-supervised Binary Neural Networks Using Distillation Loss) This is the official pytorch implementation of our paper: "S2-BNN: Bridging th

Zhiqiang Shen 52 Dec 24, 2022
Implementation of Online Label Smoothing in PyTorch

Online Label Smoothing Pytorch implementation of Online Label Smoothing (OLS) presented in Delving Deep into Label Smoothing. Introduction As the abst

83 Dec 14, 2022
PyTorch reimplementation of hand-biomechanical-constraints (ECCV2020)

Hand Biomechanical Constraints Pytorch Unofficial PyTorch reimplementation of Hand-Biomechanical-Constraints (ECCV2020). This project reimplement foll

Hao Meng 59 Dec 20, 2022
FinRL­-Meta: A Universe for Data­-Driven Financial Reinforcement Learning. 🔥

FinRL-Meta: A Universe of Market Environments. FinRL-Meta is a universe of market environments for data-driven financial reinforcement learning. Users

AI4Finance Foundation 543 Jan 08, 2023
Direct design of biquad filter cascades with deep learning by sampling random polynomials.

IIRNet Direct design of biquad filter cascades with deep learning by sampling random polynomials. Usage git clone https://github.com/csteinmetz1/IIRNe

Christian J. Steinmetz 55 Nov 02, 2022
MNIST, but with Bezier curves instead of pixels

bezier-mnist This is a work-in-progress vector version of the MNIST dataset. Samples Here are some samples from the training set. Note that, while the

Alex Nichol 15 Jan 16, 2022
[ICCV 2021] Released code for Causal Attention for Unbiased Visual Recognition

CaaM This repo contains the codes of training our CaaM on NICO/ImageNet9 dataset. Due to my recent limited bandwidth, this codebase is still messy, wh

Wang Tan 66 Dec 31, 2022
This is the official repository of the paper Stocastic bandits with groups of similar arms (NeurIPS 2021). It contains the code that was used to compute the figures and experiments of the paper.

Experiments How to reproduce experimental results of Stochastic bandits with groups of similar arms submitted paper ? Section 5 of the paper To reprod

Fabien 0 Oct 25, 2021
Pytorch implementation of SimSiam Architecture

SimSiam-pytorch A simple pytorch implementation of Exploring Simple Siamese Representation Learning which is developed by Facebook AI Research (FAIR)

Saeed Shurrab 1 Oct 20, 2021
Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021)

T2Net Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021) [Paper][Code] Dependencies numpy==1.18.5 scikit_image==

64 Nov 23, 2022
RRxIO - Robust Radar Visual/Thermal Inertial Odometry: Robust and accurate state estimation even in challenging visual conditions.

RRxIO - Robust Radar Visual/Thermal Inertial Odometry RRxIO offers robust and accurate state estimation even in challenging visual conditions. RRxIO c

Christopher Doer 64 Dec 29, 2022
An Artificial Intelligence trying to drive a car by itself on a user created map

An Artificial Intelligence trying to drive a car by itself on a user created map

Akhil Sahukaru 17 Jan 13, 2022
NP DRAW paper released code

NP-DRAW: A Non-Parametric Structured Latent Variable Model for Image Generation This repo contains the official implementation for the NP-DRAW paper.

ZENG Xiaohui 22 Mar 13, 2022
SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

SEOVER-Master This code is the implementation of paper: SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

4 Feb 24, 2022
Wafer Fault Detection using MlOps Integration

Wafer Fault Detection using MlOps Integration This is an end to end machine learning project with MlOps integration for predicting the quality of wafe

Sethu Sai Medamallela 0 Mar 11, 2022
Encode and decode text application

Text Encoder and Decoder Encode and decode text in many ways using this application! Encode in: ASCII85 Base85 Base64 Base32 Base16 Url MD5 Hash SHA-1

Alice 1 Feb 12, 2022
A PyTorch implementation of PointRend: Image Segmentation as Rendering

PointRend A PyTorch implementation of PointRend: Image Segmentation as Rendering [arxiv] [Official Implementation: Detectron2] This repo for Only Sema

AhnDW 336 Dec 26, 2022
TART - A PyTorch implementation for Transition Matrix Representation of Trees with Transposed Convolutions

TART This project is a PyTorch implementation for Transition Matrix Representati

Lee Sael 2 Jan 19, 2022