This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Motion .

Overview

ROSEFusion 🌹

This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Motion .

Introduction

ROSEFsuion is proposed to tackle the difficulties in fast-motion camera tracking using random optimization with depth information only. Our method attains good quality pose tracking under fast camera motion in a realtime framerate without including loop closure or global pose optimization.

Installation

The code is based on C++ and CUDA with the support of:

  • Pangolin
  • OpenCV with CUDA (v.4.5 is required, for instance you can follow the link)
  • Eigen
  • CUDA (v.11 and above is required)

Befor building, please make sure the architecture (sm_xx and compute_xx) in the L22 of CMakeLists.txt is compatible with your own graphics card.

Our code has been tested with Nvidia GeForce RTX 2080 SUPER on Ubuntu 16.04.

[Option] Test with Docker

We have already upload a docker image with all the lib, code and data. Please download the image from the google drive.

Prepare

Make sure you have successfully installed the docker and nvidia docker. Once the environment is ready, you can using following commands to boot the docker image:

sudo docker load -i rosefusion_docker.tar 
sudo docker run -it  --gpus all jiazhao/rosefusion:v7 /bin/bash

And please check the architecture in the L22 of /home/code/ROSEFusion-main/CMakeList.txt is compatible with your own graphics card. If not, change the sm_xx and compute_xx, then rebuild the ROSEFusion.

QuickStart

All the data and configuration files are ready for using. You can find "run_example.sh" and "run_stairwell.sh" in /home/code/ROSEFusion-main/build. After running the scripts, the trajectory and reconstuciton results woulSd be generated in /home/code/rosefusion_xxx_data.

Configuration File

We use the following configuration files to make the parameters setting easier. There are four types of configuration files.

  • seq_generation_config.yaml: data information
  • camera_config.yaml: camera and image information.
  • data_config.yaml: output path, sequence file path and parameters of the volume.
  • controller_config.yaml: visualization, saving and parameters of tacking.

The seq_generation_config.yaml is only used in data preparation, and the other three types of configuration files are necessary to run the fusion part. The configuration files of many common datasets are given in [type]_config/ directory, you can change the settings to fit your own dataset.

Data Preparation

The details of data prepartiation can be found in src/seq_gen.cpp. By using the seq_generation_config.yaml introduced above, you can run the program:

./seq_gen  sequence_information.yaml

Once finished, there will be a .seq file containing all the information of the sequence.

Particle Swarm Template

We share the same pre-sampled PST as we used in our paper. Each PST is saved as an N×6 image and the N represents the number of particles. You can find the .tiff images in PST dicrectory, and please prelace the PST path in controller_config.yaml with your own path.

Running

To run the fusion code, you need to provide the camera_config.yaml, data_config.yaml and controller_config.yaml. We already share configuration files of many common datasets in ./camera_config, ./data_config, /controller_config. All the parameters of configuration can be modified as you want. With all the preparation done, you can run the code below:

./ROSEFsuion  your_camera_config.yaml your_data_config.yaml your_controller_config.yaml

For a quick start, you can download and use a small size synthesis seq file and related configuration files. Here is a preview.

FastCaMo Dataset

We present the Fast Camera Motion dataset, which contains both synthesis and real captured sequences. You are welcome to download the sequences and take a try.

FastCaMo-Synth

With 10 diverse room-scale scenes from Replica Dataset, we render the color images and depth maps along the synthesis trajectories. The raw sequences are provided in FastCaMo-synth-data(raw).zip, and we also provide the FastCaMo-synth-data(noise).zip with synthesis noise. We use the same noise model as simkinect. For evaluation, you can download the ground truth trajectories.

FastCaMo-Real

There are 12 real captured RGB-D sequences with fast camera motions are released. Each sequence is recorded in a challenging scene like gym or stairwell by using Azure Kinect DK. We offer a full and dense reconstruction scanned using the high-end laser scanner, serving as ground truth. However, The original file is extremely large, we will share the dense reconstruction in another platform or release the sub-sampled version only.

Citation

If you find our work useful in your research, please consider citing:

@article {zhang_sig21,
    title = {ROSEFusion: Random Optimization for Online Dense Reconstruction under Fast Camera Motion},
    author = {Jiazhao Zhang and Chenyang Zhu and Lintao Zheng and Kai Xu},
    journal = {ACM Transactions on Graphics (SIGGRAPH 2021)},
    volume = {40},
    number = {4},
    year = {2021}
}

Acknowledgments

Our code is inspired by KinectFusionLib.

This is an open-source version of ROSEFusion, some functions have been rewritten to avoid certain license. It would not be expected to reproduce the result exactly, but the result is almost the same.

License

The source code is released under GPLv3 license.

Contact

If you have any questions, feel free to email Jiazhao Zhang at [email protected].

This is the code related to "Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation" (ICCV 2021).

Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation This is the code relat

39 Sep 23, 2022
paper list in the area of reinforcenment learning for recommendation systems

paper list in the area of reinforcenment learning for recommendation systems

HenryZhao 23 Jun 09, 2022
PyTorch module to use OpenFace's nn4.small2.v1.t7 model

OpenFace for Pytorch Disclaimer: This codes require the input face-images that are aligned and cropped in the same way of the original OpenFace. * I m

Pete Tae-hoon Kim 176 Dec 12, 2022
Code for our TKDE paper "Understanding WeChat User Preferences and “Wow” Diffusion"

wechat-wow-analysis Understanding WeChat User Preferences and “Wow” Diffusion. Fanjin Zhang, Jie Tang, Xueyi Liu, Zhenyu Hou, Yuxiao Dong, Jing Zhang,

18 Sep 16, 2022
Learning to Prompt for Continual Learning

Learning to Prompt for Continual Learning (L2P) Official Jax Implementation L2P is a novel continual learning technique which learns to dynamically pr

Google Research 207 Jan 06, 2023
Graph Neural Networks with Keras and Tensorflow 2.

Welcome to Spektral Spektral is a Python library for graph deep learning, based on the Keras API and TensorFlow 2. The main goal of this project is to

Daniele Grattarola 2.2k Jan 08, 2023
MLP-Like Vision Permutator for Visual Recognition (PyTorch)

Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition (arxiv) This is a Pytorch implementation of our paper. We present Vision

Qibin (Andrew) Hou 162 Nov 28, 2022
The Pytorch code of "Joint Distribution Matters: Deep Brownian Distance Covariance for Few-Shot Classification", CVPR 2022 (Oral).

DeepBDC for few-shot learning        Introduction In this repo, we provide the implementation of the following paper: "Joint Distribution Matters: Dee

FeiLong 116 Dec 19, 2022
Code for the paper: Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization (https://arxiv.org/abs/2002.11798)

Representation Robustness Evaluations Our implementation is based on code from MadryLab's robustness package and Devon Hjelm's Deep InfoMax. For all t

Sicheng 19 Dec 07, 2022
Representing Long-Range Context for Graph Neural Networks with Global Attention

Graph Augmentation Graph augmentation/self-supervision/etc. Algorithms gcn gcn+virtual node gin gin+virtual node PNA GraphTrans Augmentation methods N

UC Berkeley RISE 67 Dec 30, 2022
A curated list of awesome resources related to Semantic Search🔎 and Semantic Similarity tasks.

A curated list of awesome resources related to Semantic Search🔎 and Semantic Similarity tasks.

224 Jan 04, 2023
ColossalAI-Examples - Examples of training models with hybrid parallelism using ColossalAI

ColossalAI-Examples This repository contains examples of training models with Co

HPC-AI Tech 185 Jan 09, 2023
Implementation of ToeplitzLDA for spatiotemporal stationary time series data.

Code for the ToeplitzLDA classifier proposed in here. The classifier conforms sklearn and can be used as a drop-in replacement for other LDA classifiers. For in-depth usage refer to the learning from

Jan Sosulski 5 Nov 07, 2022
Unofficial Implementation of Oboe (SIGCOMM'18').

Oboe-Reproduce This is the unofficial implementation of the paper "Oboe: Auto-tuning video ABR algorithms to network conditions, Zahaib Akhtar, Yun Se

Tianchi Huang 13 Nov 04, 2022
automatic color-grading

color-matcher Description color-matcher enables color transfer across images which comes in handy for automatic color-grading of photographs, painting

hahnec 168 Jan 05, 2023
GestureSSD CBAM - A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js

GestureSSD_CBAM A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js SSD implementation is based on https://github

xue_senhua1999 2 Jan 06, 2022
A simple, unofficial implementation of MAE using pytorch-lightning

Masked Autoencoders in PyTorch A simple, unofficial implementation of MAE (Masked Autoencoders are Scalable Vision Learners) using pytorch-lightning.

Connor Anderson 20 Dec 03, 2022
Official implementation of the ICML2021 paper "Elastic Graph Neural Networks"

ElasticGNN This repository includes the official implementation of ElasticGNN in the paper "Elastic Graph Neural Networks" [ICML 2021]. Xiaorui Liu, W

liuxiaorui 34 Dec 04, 2022
Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore

[AI6122] Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instructor of this course

HT. Li 5 Sep 12, 2022
Fuzzing tool (TFuzz): a fuzzing tool based on program transformation

T-Fuzz T-Fuzz consists of 2 components: Fuzzing tool (TFuzz): a fuzzing tool based on program transformation Crash Analyzer (CrashAnalyzer): a tool th

HexHive 244 Nov 09, 2022