icepickle is to allow a safe way to serialize and deserialize linear scikit-learn models

Overview

icepickle

It's a cooler way to store simple linear models.

The goal of icepickle is to allow a safe way to serialize and deserialize linear scikit-learn models. Not only is this much safer, but it also allows for an interesting finetuning pattern that does not require a GPU.

Installation

You can install everything with pip:

python -m pip install icepickle

Usage

Let's say that you've gotten a linear model from scikit-learn trained on a dataset.

from sklearn.linear_model import LogisticRegression
from sklearn.datasets import load_wine

X, y = load_wine(return_X_y=True)

clf = LogisticRegression()
clf.fit(X, y)

Then you could use a pickle to save the model.

from joblib import dump, load

# You can save the classifier.
dump(clf, 'classifier.joblib')

# You can load it too.
clf_reloaded = load('classifier.joblib')

But this is unsafe. The scikit-learn documentations even warns about the security concerns and compatibility issues. The goal of this package is to offer a safe alternative to pickling for simple linear models. The coefficients will be saved in a .h5 file and can be loaded into a new regression model later.

from icepickle.linear_model import save_coefficients, load_coefficients

# You can save the classifier.
save_coefficients(clf, 'classifier.h5')

# You can create a new model, with new hyperparams.
clf_reloaded = LogisticRegression()

# Load the previously trained weights in.
load_coefficients(clf_reloaded, 'classifier.h5')

This is a lot safer and there's plenty of use-cases that could be handled this way.

There's a cool finetuning-trick we can do now too!

Finetuning

Assuming that you use a stateless featurizer in your pipeline, such as HashingVectorizer or language models from whatlies, you choose to pre-train your scikit-learn model beforehand and fine-tune it later using models that offer the .partial_fit()-api. If you're unfamiliar with this api, you might appreciate this course on calmcode.

This library also comes with utilities that makes it easier to finetune systems via the .partial_fit() API. In particular we offer partial pipeline components via the icepickle.pipeline submodule.

import pandas as pd
from sklearn.linear_model import SGDClassifier, LogisticRegression
from sklearn.feature_extraction.text import HashingVectorizer

from icepickle.linear_model import save_coefficients, load_coefficients
from icepickle.pipeline import make_partial_pipeline

url = "https://raw.githubusercontent.com/koaning/icepickle/main/datasets/imdb_subset.csv"
df = pd.read_csv(url)
X, y = list(df['text']), df['label']

# Train a pre-trained model.
pretrained = LogisticRegression()
pipe = make_partial_pipeline(HashingVectorizer(), pretrained)
pipe.fit(X, y)

# Save the coefficients, safely.
save_coefficients(pretrained, 'pretrained.h5')

# Create a new model using pre-trained weights.
finetuned = SGDClassifier()
load_coefficients(finetuned, 'pretrained.h5')
new_pipe = make_partial_pipeline(HashingVectorizer(), finetuned)

# This new model can be used for fine-tuning.
for i in range(10):
    # Inside this for-loop you could consider doing data-augmentation.
    new_pipe.partial_fit(X, y)
Supported Pipeline Parts

The following pipeline components are added.

from icepickle.pipeline import (
    PartialPipeline,
    PartialFeatureUnion,
    make_partial_pipeline,
    make_partial_union,
)

These tools allow you to declare pipelines that support .partial_fit. Note that components used in these pipelines all need to have .partial_fit() implemented.

Supported Scikit-Learn Models

We unit test against the following models in our save_coefficients and load_coefficients functions.

from sklearn.linear_model import (
    SGDClassifier,
    SGDRegressor,
    LinearRegression,
    LogisticRegression,
    PassiveAggressiveClassifier,
    PassiveAggressiveRegressor,
)
Owner
vincent d warmerdam
Solving problems involving data. Mostly NLP these days. AskMeAnything[tm].
vincent d warmerdam
🌊 River is a Python library for online machine learning.

River is a Python library for online machine learning. It is the result of a merger between creme and scikit-multiflow. River's ambition is to be the go-to library for doing machine learning on strea

OnlineML 4k Jan 03, 2023
Tutorial for Decision Threshold In Machine Learning.

Decision-Threshold-ML Tutorial for improve skills: 'Decision Threshold In Machine Learning' (from GeeksforGeeks) by Marcus Mariano For more informatio

0 Jan 20, 2022
A simple python program which predicts the success of a movie based on it's type, actor, actress and director

Movie-Success-Prediction A simple python program which predicts the success of a movie based on it's type, actor, actress and director. The program us

Mahalinga Prasad R N 1 Dec 17, 2021
PyPOTS - A Python Toolbox for Data Mining on Partially-Observed Time Series

A python toolbox/library for data mining on partially-observed time series, supporting tasks of forecasting/imputation/classification/clustering on incomplete multivariate time series with missing va

Wenjie Du 179 Dec 31, 2022
Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis.

Kats, a kit to analyze time series data, a lightweight, easy-to-use, generalizable, and extendable framework to perform time series analysis, from understanding the key statistics and characteristics

Facebook Research 4.1k Dec 29, 2022
Scikit-Learn useful pre-defined Pipelines Hub

Scikit-Pipes Scikit-Learn useful pre-defined Pipelines Hub Usage: Install scikit-pipes It's advised to install sklearn-genetic using a virtual env, in

Rodrigo Arenas 1 Apr 26, 2022
Azure MLOps (v2) solution accelerators.

Azure MLOps (v2) solution accelerator Welcome to the MLOps (v2) solution accelerator repository! This project is intended to serve as the starting poi

Microsoft Azure 233 Jan 01, 2023
Regularization and Feature Selection in Least Squares Temporal Difference Learning

Regularization and Feature Selection in Least Squares Temporal Difference Learning Description This is Python implementations of Least Angle Regressio

Mina Parham 0 Jan 18, 2022
决策树分类与回归模型的实现和可视化

DecisionTree 决策树分类与回归模型,以及可视化 DecisionTree ID3 C4.5 CART 分类 回归 决策树绘制 分类树 回归树 调参 剪枝 ID3 ID3决策树是最朴素的决策树分类器: 无剪枝 只支持离散属性 采用信息增益准则 在data.py中,我们记录了一个小的西瓜数据

Welt Xing 10 Oct 22, 2022
A simple example of ML classification, cross validation, and visualization of feature importances

Simple-Classifier This is a basic example of how to use several different libraries for classification and ensembling, mostly with sklearn. Example as

Rob 2 Aug 25, 2022
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

RGF-team 363 Dec 14, 2022
Avocado hass time series vs predict price

AVOCADO HASS TIME SERIES VÀ PREDICT PRICE Trước khi vào Heroku muốn giao diện đẹp mọi người chuyển giúp mình theo hình bên dưới https://avocado-hass.h

hieulmsc 3 Dec 18, 2021
A pure-python implementation of the UpSet suite of visualisation methods by Lex, Gehlenborg et al.

pyUpSet A pure-python implementation of the UpSet suite of visualisation methods by Lex, Gehlenborg et al. Contents Purpose How to install How it work

288 Jan 04, 2023
A handy tool for common machine learning models' hyper-parameter tuning.

Common machine learning models' hyperparameter tuning This repo is for a collection of hyper-parameter tuning for "common" machine learning models, in

Kevin Hu 2 Jan 27, 2022
Uses WiFi signals :signal_strength: and machine learning to predict where you are

Uses WiFi signals and machine learning (sklearn's RandomForest) to predict where you are. Even works for small distances like 2-10 meters.

Pascal van Kooten 5k Jan 09, 2023
PySpark + Scikit-learn = Sparkit-learn

Sparkit-learn PySpark + Scikit-learn = Sparkit-learn GitHub: https://github.com/lensacom/sparkit-learn About Sparkit-learn aims to provide scikit-lear

Lensa 1.1k Jan 04, 2023
stability-selection - A scikit-learn compatible implementation of stability selection

stability-selection - A scikit-learn compatible implementation of stability selection stability-selection is a Python implementation of the stability

185 Dec 03, 2022
BentoML is a flexible, high-performance framework for serving, managing, and deploying machine learning models.

Model Serving Made Easy BentoML is a flexible, high-performance framework for serving, managing, and deploying machine learning models. Supports multi

BentoML 4.4k Jan 04, 2023
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

SUN Group @ UMN 28 Aug 03, 2022
Accelerating model creation and evaluation.

EmeraldML A machine learning library for streamlining the process of (1) cleaning and splitting data, (2) training, optimizing, and testing various mo

Yusuf 0 Dec 06, 2021