Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains

Overview

Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains

This is an accompanying repository to the ICAIL 2021 paper entitled "Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains". All the data and the code used in the experiments reported in the paper are to be found here.

Data

The data set consists of 807 adjudicatory decisions from 7 different countries (6 languages) annotated in terms of the following type system:

  • Out of Scope - Parts outside of the main document body (e.g., metadata, editorial content, dissents, end notes, appendices).
  • Heading - Typically an incomplete sentence or marker starting a section (e.g., “Discussion,” “Analysis,” “II.”).
  • Background - The part where the court describes procedural history, relevant facts, or the parties’ claims.
  • Analysis - The section containing reasoning of the court, issues, and application of law to the facts of the case.
  • Introductory Summary - A brief summary of the case at the beginning of the decision.
  • Outcome - A few sentences stating how the case was decided (i.e, the overall outcome of the case).

The country specific subsets:

  • Canada - Random selection of cases retrieved from www.canlii.org from multiple provinces. The selection is not limited to any specific topic or court.
  • Czech Republic - A random selection of cases from Constitutional Court (30), Supreme Court (40), and Supreme Administrative Court (30). Temporal distribution was taken into account.
  • France - A selection of cases decided by Cour de cassation between 2011 and 2019. A stratified sampling based on the year of publication of the decision was used to select the cases.
  • Germany - A stratified sample from the federal jurisprudence database spanning all federal courts (civil, criminal, labor, finance, patent, social, constitutional, and administrative).
  • Italy - The top 100 cases of the criminal courts stored between 2015 and 2020 mentioning “stalking” and keyed to the Article 612 bis of the Criminal Code.
  • Poland - A stratified sample from trial-level, appellate, administrative courts, the Supreme Court, and the Constitutional tribunal. The cases mention “democratic country ruled by law.”
  • U.S.A. I - Federal district court decisions in employment law mentioning “motion for summary judgment,” “employee,” and “independent contractor.”
  • U.S.A. II - Administrative decisions from the U.S. Department of Labor. Top 100 ordered in reverse chronological rulings order, starting in October 2020, were selected.

For more detailed information, please, refer to the original paper.

How to Use

ICAIL 2021 Data

The data used in the ICAIL 2021 experiments can be found in the following paths:

data/Country-Language-*/annotator-*-ICAIL2021.csv

Note that the Canadian subset could not be included in this repository due to concerns about personal information protection in Canada. However, it can be obtained upon request at [email protected]. Once you obtain the data, you just need to create data/Canada-EN-1 directory and place all the files there.

If you would like to experiment with different preprocessing techniques the original texts are placed in the following paths:

data/Country-Language-*/texts

You can find the annotations corresponding to these texts here:

data/Country-Language-*/annotator-*.csv

The texts cleaned of the Out of Scope and Heading segments (via dataset_clean.py) are placed in the following paths:

data/Country-Language-*/texts-clean-annotator-*

Note that the processing depends on annotations. Hence, there are several versions of documents at this stage if there were multiple annotators. The annotations corresponding to the cleaned texts are here:

data/Country-Language-*/annotator-*-clean.csv

The dataset_ICAIL2021.py has the processing code that has been applied to the cleaned texts and annotations to generate the ICAIL 2021 dataset (see above). Note, that the code will skip the Czech Republic subset by default. This is because this subset requires an external resource for sentence segmentation (czech-pdt-ud-X.X-XXXXXX.udpipe). You first need to obtain the file at https://universaldependencies.org/. Then, you need to place it into the data directory. Then, you can remove the Czech_Republic-CZ-1 string from the EXCLUDED tuple in dataset_ICAIL2021.py. Finally, you need to replace the data/czech-pdt-ud-2.5-191206.udpipe string in the utils.py to correspond to the file that you have downloaded. After these changes, the code will also operate on the Czech Republic part of the dataset.

Dataset Statistics

To replicate the inter-annotator agreement analysis performed in the ICAIL 2021 paper you can use the ia_agreement.ipynb notebook.

To generate the dataset statistics reported in the ICAIL 2021 paper you can use the dataset_statistics.ipynb notebook.

Experiments

The file ICAIL2021_experiments.ipynb contains the code necessary to run the code presented in the paper. This includes the code to embed the sentences of the cases into a multilingual vector representation, the definition of the Gated Recurrent Unit model and the code to train and evaluated along the different experiments described in the paper. It also contains the code to create the visualizations presented in the discussion section of the paper.

The notebook can be run in two different ways:

Attribution

We kindly ask you to cite the following paper:

@inproceedings{savelka2021,
    title={Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains},
    author={Jaromir Savelka and Hannes Westermann and Karim Benyekhlef and Charlotte S. Alexander and Jayla C. Grant and David Restrepo Amariles and Rajaa El Hamdani and S\'{e}bastien Mee\`{u}s and Aurore Troussel and Micha\l\ Araszkiewicz and Kevin D. Ashley and Alexandra Ashley and Karl Branting and Mattia Falduti and Matthias Grabmair and Jakub Hara\v{s}ta and Tereza Novotn\'a, Elizabeth Tippett and Shiwanni Johnson},
    year={2021},
    booktitle={Proceedings of the 18th International Conference on Artificial Intelligence and Law},
    publisher={Association for Computing Machinery},
    doi={10.1145/3462757.3466149}
}

Jaromir Savelka, Hannes Westermann, Karim Benyekhlef, Charlotte S. Alexander, Jayla C. Grant, David Restrepo Amariles, Rajaa El Hamdani, Sébastien Meeùs, Aurore Troussel, Michał Araszkiewicz, Kevin D. Ashley, Alexandra Ashley, Karl Branting, Mattia Falduti, Matthias Grabmair, Jakub Harašta, Tereza Novotná, Elizabeth Tippett, and Shiwanni Johnson. 2021. Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains. In Eighteenth International Conference for Artificial Intelligence and Law (ICAIL’21), June 21–25, 2021, São Paulo, Brazil. ACM, New York,NY, USA, 10 pages. https://doi.org/10.1145/3462757.3466149

An implementation of the WHATWG URL Standard in JavaScript

whatwg-url whatwg-url is a full implementation of the WHATWG URL Standard. It can be used standalone, but it also exposes a lot of the internal algori

314 Dec 28, 2022
用opencv的dnn模块做yolov5目标检测,包含C++和Python两个版本的程序

yolov5-dnn-cpp-py yolov5s,yolov5l,yolov5m,yolov5x的onnx文件在百度云盘下载, 链接:https://pan.baidu.com/s/1d67LUlOoPFQy0MV39gpJiw 提取码:bayj python版本的主程序是main_yolov5.

365 Jan 04, 2023
Differentiable Quantum Chemistry (only Differentiable Density Functional Theory and Hartree Fock at the moment)

DQC: Differentiable Quantum Chemistry Differentiable quantum chemistry package. Currently only support differentiable density functional theory (DFT)

75 Dec 02, 2022
Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition

Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition How Fast Compare to Other Zero-Shot NAS Proxies on CIFAR-10/100 Pre-trained Model

190 Dec 29, 2022
The implementation of 'Image synthesis via semantic composition'.

Image synthesis via semantic synthesis [Project Page] by Yi Wang, Lu Qi, Ying-Cong Chen, Xiangyu Zhang, Jiaya Jia. Introduction This repository gives

DV Lab 71 Jan 06, 2023
AgeGuesser: deep learning based age estimation system. Powered by EfficientNet and Yolov5

AgeGuesser AgeGuesser is an end-to-end, deep-learning based Age Estimation system, presented at the CAIP 2021 conference. You can find the related pap

5 Nov 10, 2022
This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters.

openmc-plasma-source This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters. The OpenMC sources a

Fusion Energy 10 Oct 18, 2022
YoloV3 Implemented in Tensorflow 2.0

YoloV3 Implemented in TensorFlow 2.0 This repo provides a clean implementation of YoloV3 in TensorFlow 2.0 using all the best practices. Key Features

Zihao Zhang 2.5k Dec 26, 2022
Flybirds - BDD-driven natural language automated testing framework, present by Trip Flight

Flybird | English Version 行为驱动开发(Behavior-driven development,缩写BDD),是一种软件过程的思想或者

Ctrip, Inc. 706 Dec 30, 2022
Reusable constraint types to use with typing.Annotated

annotated-types PEP-593 added typing.Annotated as a way of adding context-specific metadata to existing types, and specifies that Annotated[T, x] shou

125 Dec 26, 2022
Conformer: Local Features Coupling Global Representations for Visual Recognition

Conformer: Local Features Coupling Global Representations for Visual Recognition (arxiv) This repository is built upon DeiT and timm Usage First, inst

Zhiliang Peng 378 Jan 08, 2023
This is the official implementation of our proposed SwinMR

SwinMR This is the official implementation of our proposed SwinMR: Swin Transformer for Fast MRI Please cite: @article{huang2022swin, title={Swi

A Yang Lab (led by Dr Guang Yang) 27 Nov 17, 2022
pytorch bert intent classification and slot filling

pytorch_bert_intent_classification_and_slot_filling 基于pytorch的中文意图识别和槽位填充 说明 基本思路就是:分类+序列标注(命名实体识别)同时训练。 使用的预训练模型:hugging face上的chinese-bert-wwm-ext 依

西西嘛呦 33 Dec 15, 2022
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 321 Dec 27, 2022
Face Recognition plus identification simply and fast | Python

PyFaceDetection Face Recognition plus identification simply and fast Ubuntu Setup sudo pip3 install numpy sudo pip3 install cmake sudo pip3 install dl

Peyman Majidi Moein 16 Sep 22, 2022
Action Segmentation Evaluation

Reference Action Segmentation Evaluation Code This repository contains the reference code for action segmentation evaluation. If you have a bug-fix/im

5 May 22, 2022
structured-generative-modeling

This repository contains the implementation for the paper Information Theoretic StructuredGenerative Modeling, Specially thanks for the open-source co

0 Oct 11, 2021
Its a Plant Leaf Disease Detection System based on Machine Learning.

My_Project_Code Its a Plant Leaf Disease Detection System based on Machine Learning. I have used Tomato Leaves Dataset from kaggle. This system detect

Sanskriti Sidola 3 Jun 15, 2022
Automatic labeling, conversion of different data set formats, sample size statistics, model cascade

Simple Gadget Collection for Object Detection Tasks Automatic image annotation Conversion between different annotation formats Obtain statistical info

llt 4 Aug 24, 2022
A modular domain adaptation library written in PyTorch.

A modular domain adaptation library written in PyTorch.

Kevin Musgrave 225 Dec 29, 2022