official code for dynamic convolution decomposition

Related tags

Deep Learningdcd
Overview

Revisiting Dynamic Convolution via Matrix Decomposition (ICLR 2021)

A pytorch implementation of DCD. If you use this code in your research please consider citing

@article{li2021revisiting, title={Revisiting Dynamic Convolution via Matrix Decomposition}, author={Li, Yunsheng and Chen, Yinpeng and Dai, Xiyang and Liu, Mengchen and Chen, Dongdong and Yu, Ye and Yuan, Lu and Liu, Zicheng and Chen, Mei and Vasconcelos, Nuno}, journal={arXiv preprint arXiv:2103.08756}, year={2021} }

Requirements

  • Hardware: PC with NVIDIA Titan GPU.
  • Software: Ubuntu 16.04, CUDA 10.0, Anaconda3, pytorch 1.0.0
  • Python package
    • conda install --quiet --yes pytorch==1.0.0 torchvision==0.2.1 cuda100 -c pytorch
    • pip install tensorboard tensorboardX pillow==6.1

Evaluate DCD on ImageNet

The pre-trained model can be downloaded here ResNet-50 and MobileNetV2x1.0

DCD for ResNet-50

python main.py -a resnet50_dcd -d /path/to/imagenet/ -b 256 -c /path/to/output -j 48 --input-size 224 --dropout 0.1 --weight /path/to/resnet50_dcd.pth.tar --evaluate

DCD for MobileNetV2x1.0

python main.py -a mobilenetv2_dcd -d /path/to/imagenet/ -b 512 -c /path/to/output --width-mult 1.0 -j 48 --input-size 224 --dropout 0.1 --fc-squeeze 16 --weight mv2x1.0_dcd.pth.tar --evaluate

Train DCD on ImageNet

DCD for ResNet-50

CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py -a resnet50_dcd -d /path/to/imagenet/ -b 256 --epochs 120 --lr-decay schedule --lr 0.1 --wd 1e-4 -c /path/to/output -j 48 --input-size 224 --label-smoothing 0.1 --dropout 0.1 --mixup 0.2

DCD for MobileNetV2x1.0

CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py -a mobilenetv2_dcd -d /path/to/imagenet/ --epochs 300 --lr-decay cos --lr 0.1 --wd 2e-5 -c /path/to/output --width-mult 1.0 -j 48 --input-size 224 --label-smoothing 0.1 --dropout 0.2 -b 512 --mixup 0.2 --fc-squeeze 16
Owner
Yunsheng Li
Yunsheng Li
Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Xiangyin Kong 7 Nov 08, 2022
Unofficial implementation of MUSIQ (Multi-Scale Image Quality Transformer)

MUSIQ: Multi-Scale Image Quality Transformer Unofficial pytorch implementation of the paper "MUSIQ: Multi-Scale Image Quality Transformer" (paper link

41 Jan 02, 2023
Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO)

V-MPO Simple code to demonstrate Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO) in Pyt

Nugroho Dewantoro 9 Jun 06, 2022
Async API for controlling Hue Lights

Hue API Async API for controlling Hue Lights Documentation: hue-api.nirantak.com Source: github.com/nirantak/hue-api Installation This is an async cli

Nirantak Raghav 4 Nov 16, 2022
A PyTorch Reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution

TecoGAN-PyTorch Introduction This is a PyTorch reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution (VSR). Please refer to

165 Dec 17, 2022
A Python training and inference implementation of Yolov5 helmet detection in Jetson Xavier nx and Jetson nano

yolov5-helmet-detection-python A Python implementation of Yolov5 to detect head or helmet in the wild in Jetson Xavier nx and Jetson nano. In Jetson X

12 Dec 05, 2022
CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss This is official implement of "

程星 87 Dec 24, 2022
Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

1.1k Jan 03, 2023
ICNet and PSPNet-50 in Tensorflow for real-time semantic segmentation

Real-Time Semantic Segmentation in TensorFlow Perform pixel-wise semantic segmentation on high-resolution images in real-time with Image Cascade Netwo

Oles Andrienko 219 Nov 21, 2022
Official code for the paper "Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks".

Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks This repository contains the official code for the

Linus Ericsson 11 Dec 16, 2022
Doosan robotic arm, simulation, control, visualization in Gazebo and ROS2 for Reinforcement Learning.

Robotic Arm Simulation in ROS2 and Gazebo General Overview This repository includes: First, how to simulate a 6DoF Robotic Arm from scratch using GAZE

David Valencia 12 Jan 02, 2023
This is the source code for the experiments related to the paper Unsupervised Audio Source Separation Using Differentiable Parametric Source Models

Unsupervised Audio Source Separation Using Differentiable Parametric Source Models This is the source code for the experiments related to the paper Un

30 Oct 19, 2022
Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021.

UniRE Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021. Requirements python: 3.7.6 pytorch: 1.8.1 transformers:

Wang Yijun 109 Nov 29, 2022
SW components and demos for visual kinship recognition. An emphasis is put on the FIW dataset-- data loaders, benchmarks, results in summary.

FIW Data Development Kit Table of Contents Introduction Families In the Wild Database Publications Organization To Do License Getting Involved Introdu

Joseph P. Robinson 12 Jun 04, 2022
Portfolio analytics for quants, written in Python

QuantStats: Portfolio analytics for quants QuantStats Python library that performs portfolio profiling, allowing quants and portfolio managers to unde

Ran Aroussi 2.7k Jan 08, 2023
Just Randoms Cats with python

Random-Cat Just Randoms Cats with python.

OriCode 2 Dec 21, 2021
[CVPR 2022] "The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy" by Tianlong Chen, Zhenyu Zhang, Yu Cheng, Ahmed Awadallah, Zhangyang Wang

The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy Codes for this paper: [CVPR 2022] The Pr

VITA 16 Nov 26, 2022
Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset

SW-CV-ModelZoo Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset Framework: TF/Keras 2.7 Training SQLite D

20 Dec 27, 2022
CondenseNet: Light weighted CNN for mobile devices

CondenseNets This repository contains the code (in PyTorch) for "CondenseNet: An Efficient DenseNet using Learned Group Convolutions" paper by Gao Hua

Shichen Liu 690 Nov 30, 2022
Official PyTorch implementation of MX-Font (Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Experts)

Introduction Pytorch implementation of Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Expert. | paper Song Park1

Clova AI Research 97 Dec 23, 2022