Keras implementation of AdaBound

Overview

AdaBound for Keras

Keras port of AdaBound Optimizer for PyTorch, from the paper Adaptive Gradient Methods with Dynamic Bound of Learning Rate.

Usage

Add the adabound.py script to your project, and import it. Can be a dropin replacement for Adam Optimizer.

Also supports AMSBound variant of the above, equivalent to AMSGrad from Adam.

from adabound import AdaBound

optm = AdaBound(lr=1e-03,
                final_lr=0.1,
                gamma=1e-03,
                weight_decay=0.,
                amsbound=False)

Results

With a wide ResNet 34 and horizontal flips data augmentation, and 100 epochs of training with batchsize 128, it hits 92.16% (called v1).

Weights are available inside the Releases tab

NOTE

  • The smaller ResNet 20 models have been removed as they did not perform as expected and were depending on a flaw during the initial implementation. The ResNet 32 shows the actual performance of this optimizer.

With a small ResNet 20 and width + height data + horizontal flips data augmentation, and 100 epochs of training with batchsize 1024, it hits 89.5% (called v1).

On a small ResNet 20 with only width and height data augmentations, with batchsize 1024 trained for 100 epochs, the model gets close to 86% on the test set (called v3 below).

Train Set Accuracy

Train Set Loss

Test Set Accuracy

Test Set Loss

Requirements

  • Keras 2.2.4+ & Tensorflow 1.12+ (Only supports TF backend for now).
  • Numpy
Comments
  • suggestion: allow to train x2 or x3 bigger networks on same vram with TF backend

    suggestion: allow to train x2 or x3 bigger networks on same vram with TF backend

    same as my PR https://github.com/keras-team/keras-contrib/pull/478 works only with TF backend

    class AdaBound(Optimizer):
        """AdaBound optimizer.
        Default parameters follow those provided in the original paper.
        # Arguments
            lr: float >= 0. Learning rate.
            final_lr: float >= 0. Final learning rate.
            beta_1: float, 0 < beta < 1. Generally close to 1.
            beta_2: float, 0 < beta < 1. Generally close to 1.
            gamma: float >= 0. Convergence speed of the bound function.
            epsilon: float >= 0. Fuzz factor. If `None`, defaults to `K.epsilon()`.
            decay: float >= 0. Learning rate decay over each update.
            weight_decay: Weight decay weight.
            amsbound: boolean. Whether to apply the AMSBound variant of this
                algorithm.
            tf_cpu_mode: only for tensorflow backend
                  0 - default, no changes.
                  1 - allows to train x2 bigger network on same VRAM consuming RAM
                  2 - allows to train x3 bigger network on same VRAM consuming RAM*2
                      and CPU power.
        # References
            - [Adaptive Gradient Methods with Dynamic Bound of Learning Rate]
              (https://openreview.net/forum?id=Bkg3g2R9FX)
            - [Adam - A Method for Stochastic Optimization]
              (https://arxiv.org/abs/1412.6980v8)
            - [On the Convergence of Adam and Beyond]
              (https://openreview.net/forum?id=ryQu7f-RZ)
        """
    
        def __init__(self, lr=0.001, final_lr=0.1, beta_1=0.9, beta_2=0.999, gamma=1e-3,
                     epsilon=None, decay=0., amsbound=False, weight_decay=0.0, tf_cpu_mode=0, **kwargs):
            super(AdaBound, self).__init__(**kwargs)
    
            if not 0. <= gamma <= 1.:
                raise ValueError("Invalid `gamma` parameter. Must lie in [0, 1] range.")
    
            with K.name_scope(self.__class__.__name__):
                self.iterations = K.variable(0, dtype='int64', name='iterations')
                self.lr = K.variable(lr, name='lr')
                self.beta_1 = K.variable(beta_1, name='beta_1')
                self.beta_2 = K.variable(beta_2, name='beta_2')
                self.decay = K.variable(decay, name='decay')
    
            self.final_lr = final_lr
            self.gamma = gamma
    
            if epsilon is None:
                epsilon = K.epsilon()
            self.epsilon = epsilon
            self.initial_decay = decay
            self.amsbound = amsbound
    
            self.weight_decay = float(weight_decay)
            self.base_lr = float(lr)
            self.tf_cpu_mode = tf_cpu_mode
    
        def get_updates(self, loss, params):
            grads = self.get_gradients(loss, params)
            self.updates = [K.update_add(self.iterations, 1)]
    
            lr = self.lr
            if self.initial_decay > 0:
                lr = lr * (1. / (1. + self.decay * K.cast(self.iterations,
                                                          K.dtype(self.decay))))
    
            t = K.cast(self.iterations, K.floatx()) + 1
    
            # Applies bounds on actual learning rate
            step_size = lr * (K.sqrt(1. - K.pow(self.beta_2, t)) /
                              (1. - K.pow(self.beta_1, t)))
    
            final_lr = self.final_lr * lr / self.base_lr
            lower_bound = final_lr * (1. - 1. / (self.gamma * t + 1.))
            upper_bound = final_lr * (1. + 1. / (self.gamma * t))
    
            e = K.tf.device("/cpu:0") if self.tf_cpu_mode > 0 else None
            if e: e.__enter__()
            ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
            vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
            if self.amsbound:
                vhats = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
            else:
                vhats = [K.zeros(1) for _ in params]
            if e: e.__exit__(None, None, None)
            
            self.weights = [self.iterations] + ms + vs + vhats
    
            for p, g, m, v, vhat in zip(params, grads, ms, vs, vhats):
                # apply weight decay
                if self.weight_decay != 0.:
                    g += self.weight_decay * K.stop_gradient(p)
    
                e = K.tf.device("/cpu:0") if self.tf_cpu_mode == 2 else None
                if e: e.__enter__()                    
                m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
                v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(g)
                if self.amsbound:
                    vhat_t = K.maximum(vhat, v_t)
                    self.updates.append(K.update(vhat, vhat_t))
                if e: e.__exit__(None, None, None)
                
                if self.amsbound:
                    denom = (K.sqrt(vhat_t) + self.epsilon)
                else:
                    denom = (K.sqrt(v_t) + self.epsilon)                        
    
                # Compute the bounds
                step_size_p = step_size * K.ones_like(denom)
                step_size_p_bound = step_size_p / denom
                bounded_lr_t = m_t * K.minimum(K.maximum(step_size_p_bound,
                                                         lower_bound), upper_bound)
    
                p_t = p - bounded_lr_t
    
                self.updates.append(K.update(m, m_t))
                self.updates.append(K.update(v, v_t))
                new_p = p_t
    
                # Apply constraints.
                if getattr(p, 'constraint', None) is not None:
                    new_p = p.constraint(new_p)
    
                self.updates.append(K.update(p, new_p))
            return self.updates
    
        def get_config(self):
            config = {'lr': float(K.get_value(self.lr)),
                      'final_lr': float(self.final_lr),
                      'beta_1': float(K.get_value(self.beta_1)),
                      'beta_2': float(K.get_value(self.beta_2)),
                      'gamma': float(self.gamma),
                      'decay': float(K.get_value(self.decay)),
                      'epsilon': self.epsilon,
                      'weight_decay': self.weight_decay,
                      'amsbound': self.amsbound}
            base_config = super(AdaBound, self).get_config()
            return dict(list(base_config.items()) + list(config.items()))
    
    opened by iperov 13
  • AdaBound.iterations

    AdaBound.iterations

    this param is not saved.

    I looked at official pytorch implementation from original paper. https://github.com/Luolc/AdaBound/blob/master/adabound/adabound.py

    it has

    # State initialization
    if len(state) == 0:
        state['step'] = 0
    

    state is saved with the optimizer.

    also it has

    # Exponential moving average of gradient values
    state['exp_avg'] = torch.zeros_like(p.data)
    # Exponential moving average of squared gradient values
    state['exp_avg_sq'] = torch.zeros_like(p.data)
    

    these values should also be saved

    So your keras implementation is wrong.

    opened by iperov 10
  • Using SGDM with lr=0.1 leads to not learning

    Using SGDM with lr=0.1 leads to not learning

    Thanks for sharing your keras version of adabound and I found that when changing optimizer from adabound to SGDM (lr=0.1), the resnet doesn't learn at all like the fig below. image

    I remember that in the original paper it uses SGDM (lr=0.1) for comparisons and I'm wondering how this could be.

    opened by syorami 10
  • clip by value

    clip by value

    https://github.com/CyberZHG/keras-adabound/blob/master/keras_adabound/optimizers.py

    K.minimum(K.maximum(step, lower_bound), upper_bound)

    will not work?

    opened by iperov 2
  • Unexpected keyword argument passed to optimizer: amsbound

    Unexpected keyword argument passed to optimizer: amsbound

    I installed with pip install keras-adabound imported with: from keras_adabound import AdaBound and declared the optimizer as: opt = AdaBound(lr=1e-03,final_lr=0.1, gamma=1e-03, weight_decay=0., amsbound=False) Then, I'm getting the error: TypeError: Unexpected keyword argument passed to optimizer: amsbound

    changing the pip install to adabound (instead of keras-adabound) and the import to from adabound import AdaBound, the keyword amsbound is recognized, but then I get the error: TypeError: __init__() missing 1 required positional argument: 'params'

    Am I mixing something up here or missing something?

    opened by stabilus 0
  • Unclear how to import and use tf.keras version

    Unclear how to import and use tf.keras version

    I have downloaded the files and placed them in a folder in the site packages for my virtual environment but I can't get this to work. I have added the folder path to sys.path and verified it is listed. I'm running Tensorflow 2.1.0. What am I doing wrong?

    opened by mnweaver1 0
  • about lr

    about lr

    Thanks for a good optimizer According to usage optm = AdaBound(lr=1e-03, final_lr=0.1, gamma=1e-03, weight_decay=0., amsbound=False) Does the learning rate gradually increase by the number of steps?


    final lr is described as Final learning rate. but it actually is leaning rate relative to base lr and current klearning rate? https://github.com/titu1994/keras-adabound/blob/5ce819b6ca1cd95e32d62e268bd2e0c99c069fe8/adabound.py#L72

    opened by tanakataiki 1
Releases(0.1)
Owner
Somshubra Majumdar
Interested in Machine Learning, Deep Learning and Data Science in general
Somshubra Majumdar
Image Segmentation and Object Detection in Pytorch

Image Segmentation and Object Detection in Pytorch Pytorch-Segmentation-Detection is a library for image segmentation and object detection with report

Daniil Pakhomov 732 Dec 10, 2022
Implement face detection, and age and gender classification, and emotion classification.

YOLO Keras Face Detection Implement Face detection, and Age and Gender Classification, and Emotion Classification. (image from wider face dataset) Ove

Chloe 10 Nov 14, 2022
A graphical Semi-automatic annotation tool based on labelImg and Yolov5

💕YOLOV5 semi-automatic annotation tool (Based on labelImg)

EricFang 247 Jan 05, 2023
Classifying cat and dog images using Kaggle dataset

PyTorch Image Classification Classifies an image as containing either a dog or a cat (using Kaggle's public dataset), but could easily be extended to

Robert Coleman 74 Nov 22, 2022
Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic

Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [Paper] [Colab is coming soon] Approach Example Usage To r

170 Jan 03, 2023
Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning

We challenge a common assumption underlying most supervised deep learning: that a model makes a prediction depending only on its parameters and the features of a single input. To this end, we introdu

OATML 360 Dec 28, 2022
PyTorch-lightning implementation of the ESFW module proposed in our paper Edge-Selective Feature Weaving for Point Cloud Matching

Edge-Selective Feature Weaving for Point Cloud Matching This repository contains a PyTorch-lightning implementation of the ESFW module proposed in our

5 Feb 14, 2022
A Dataset of Python Challenges for AI Research

Python Programming Puzzles (P3) This repo contains a dataset of python programming puzzles which can be used to teach and evaluate an AI's programming

Microsoft 850 Dec 24, 2022
Unofficial PyTorch code for BasicVSR

Dependencies and Installation The code is based on BasicSR, Please install the BasicSR framework first. Pytorch=1.51 Training cd ./code CUDA_VISIBLE_

Long 59 Dec 06, 2022
Implementation of the Transformer variant proposed in "Transformer Quality in Linear Time"

FLASH - Pytorch Implementation of the Transformer variant proposed in the paper Transformer Quality in Linear Time Install $ pip install FLASH-pytorch

Phil Wang 209 Dec 28, 2022
Computer Vision Script to recognize first person motion, developed as final project for the course "Machine Learning and Deep Learning"

Overview of The Code BaseColab/MLDL_FPAR.pdf: it contains the full explanation of our work Base Colab: it contains the base colab used to perform all

Simone Papicchio 4 Jul 16, 2022
Usable Implementation of "Bootstrap Your Own Latent" self-supervised learning, from Deepmind, in Pytorch

Bootstrap Your Own Latent (BYOL), in Pytorch Practical implementation of an astoundingly simple method for self-supervised learning that achieves a ne

Phil Wang 1.4k Dec 29, 2022
An Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering

PC-SOS-SDP: an Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering PC-SOS-SDP is an exact algorithm based on the branch-and-bound techn

Antonio M. Sudoso 1 Nov 13, 2022
Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning

Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning Reference Abeßer, J. & Müller, M. Towards Audio Domain Adapt

Jakob Abeßer 2 Jul 06, 2022
Repository for "Space-Time Correspondence as a Contrastive Random Walk" (NeurIPS 2020)

Space-Time Correspondence as a Contrastive Random Walk This is the repository for Space-Time Correspondence as a Contrastive Random Walk, published at

A. Jabri 239 Dec 27, 2022
TensorLight - A high-level framework for TensorFlow

TensorLight is a high-level framework for TensorFlow-based machine intelligence applications. It reduces boilerplate code and enables advanced feature

Benjamin Kan 10 Jul 31, 2022
Causal estimators for use with WhyNot

WhyNot Estimators A collection of causal inference estimators implemented in Python and R to pair with the Python causal inference library whynot. For

ZYKLS 8 Apr 06, 2022
Robust Consistent Video Depth Estimation

[CVPR 2021] Robust Consistent Video Depth Estimation This repository contains Python and C++ implementation of Robust Consistent Video Depth, as descr

Facebook Research 213 Dec 17, 2022
Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion"

DSPoint Official implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion". Paper link: https://arxiv.org/abs/2111.10

Ziyao Zeng 14 Feb 26, 2022
MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.

MMdnn MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model manage

Microsoft 5.7k Jan 09, 2023