The official colors of the FAU as matplotlib/seaborn colormaps

Overview

FAU - Colors

PyPI GitHub Code style: black PyPI - Downloads GitHub commit activity

The official colors of Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) as matplotlib / seaborn colormaps.

We support the old colors based on the 2019 CI-guidelines and the brand new 2021 Brand redesign.

Installation

pip install fau-colors

Quick Guide

2021 colormaps

2021 colors

import seaborn as sns

from fau_colors import register_cmaps
register_cmaps()

sns.set_palette("tech")

2019 colormaps

2019 colors

import seaborn as sns

from fau_colors.v2019 import register_cmaps
register_cmaps()

sns.set_palette("tech")

General Usage

The 2019 and the 2021 colors are available in the separate submodules fau_colors.v2019 and fau_colors.v2021 that contain equivalent functions.

Note: For convenience, the v2021 colors can also be accessed from the top-level. In the following examples we will use this shorter notation.

The methods below show the usage with the new color scheme. For the old colors simply replace the module name.

Registering color palettes

The easiest way to use the provided color palettes is to register them as global matplotlib colormaps. This can be done by calling the register_cmaps() function from the respective submodule. All available cmaps can be seen in the images above.

2021 colors

>>> from fau_colors import register_cmaps  # v2021 colors
>>> register_cmaps()

2019 colors

>>> from fau_colors.v2019 import register_cmaps
>>> register_cmaps()

WARNING: The 2019 and 2021 cmaps have overlapping names! This means you can not register both at the same time. You need to call unregister_cmaps from the correct module first, before you can register the other colormaps. If you need colormaps from both CI-guides, use them individually, as shown below.

Getting the raw colors

All primary faculty colors are stored in a namedtuple called colors.

2021 colors

>>> from fau_colors import colors  # v2021 colors
>>> colors
FacultyColors(fau='#002F6C', tech='#779FB5', phil='#FFB81C', med='#00A3E0', nat='#43B02A', wiso='#C8102E')
>>> colors.fau
'#002F6C'

2019 colors

>>> from fau_colors.v2019 import colors
>>> colors
FacultyColors(fau='#003865', tech='#98a4ae', phil='#c99313', med='#00b1eb', nat='#009b77', wiso='#8d1429')
>>> colors.fau
'##003865'

For the 2021 color scheme also the variable colors_dark and colors_all are available. They contain the dark variant of each color, as well as light and dark colors combined, respectively.

Manually getting the colormaps

The colormaps are stored in a namedtuple called cmaps. There are colormaps for the primary colors and colormaps with varying lightness using each color as the base color. The latter colormaps contain 5 colors each with 12.5, 25, 37.5, 62.5, and 100% value of the base color. If you need more than 5 colors see below.

2021 colors

>>> from fau_colors import cmaps  # v2021 colors
>>> # Only get the names here
>>> cmaps._fields
('faculties', 'faculties_dark', 'faculties_all', 'fau', 'fau_dark', 'tech', 'tech_dark', 'phil', 'phil_dark', 'med', 'med_dark', 'nat', 'nat_dark', 'wiso', 'wiso_dark')
>>> cmaps.fau_dark
[(0.01568627450980392, 0.11764705882352941, 0.25882352941176473), (0.3823913879277201, 0.4463667820069205, 0.5349480968858131), (0.629434832756632, 0.6678200692041523, 0.7209688581314879), (0.7529565551710881, 0.7785467128027682, 0.8139792387543252), (0.876478277585544, 0.889273356401384, 0.9069896193771626)]
>>> import seaborn as sns
>>> sns.set_palette(cmaps.fau_dark)

2019 colors

>>> from fau_colors.v2019 import cmaps
>>> # Only get the names here
>>> cmaps._fields
('faculties', 'fau', 'tech', 'phil', 'med', 'nat', 'wiso')
>>> cmaps.fau
[(0.0, 0.2196078431372549, 0.396078431372549), (0.37254901960784315, 0.5103421760861206, 0.6210688196847366), (0.6235294117647059, 0.7062053056516724, 0.772641291810842), (0.7490196078431373, 0.8041368704344483, 0.8484275278738946), (0.8745098039215686, 0.9020684352172241, 0.9242137639369473)]
>>> import seaborn as sns
>>> sns.set_palette(cmaps.fau)

Modifying the colormaps

Sometimes five colors are not enough for a colormap. The easiest way to generate more colors is to use one of the FAU colors as base and then create custom sequential palettes from it. This can be done using sns.light_palette or sns.dark_palette, as explained here.

2021 colors

>>> from fau_colors import colors  # v2021 colors
>>> import seaborn as sns
>>> sns.light_palette(colors.med, n_colors=8)
[(0.9370639121761148, 0.9445189791516921, 0.9520035391049294), (0.8047725363394869, 0.9014173378043252, 0.9416168802970363), (0.6688064000629526, 0.8571184286417537, 0.9309417031889239), (0.5365150242263246, 0.8140167872943868, 0.9205550443810308), (0.40054888794979027, 0.7697178781318151, 0.9098798672729183), (0.2682575121131623, 0.7266162367844482, 0.8994932084650251), (0.13229137583662798, 0.6823173276218767, 0.8888180313569127), (0.0, 0.6392156862745098, 0.8784313725490196)]

2019 colors

>>> from fau_colors.v2019 import colors
>>> import seaborn as sns
>>> sns.light_palette(colors.med, n_colors=8)
[(0.9363137612705862, 0.94473936725293, 0.9520047198366567), (0.8041282890912094, 0.9093574773431737, 0.9477078597351495), (0.6682709982401831, 0.8729927571581465, 0.9432916424086003), (0.5360855260608062, 0.8376108672483904, 0.9389947823070931), (0.40022823520978, 0.8012461470633632, 0.9345785649805439), (0.2680427630304031, 0.765864257153607, 0.9302817048790367), (0.13218547217937693, 0.7294995369685797, 0.9258654875524875), (0.0, 0.6941176470588235, 0.9215686274509803)]c
You might also like...
:small_red_triangle: Ternary plotting library for python with matplotlib
:small_red_triangle: Ternary plotting library for python with matplotlib

python-ternary This is a plotting library for use with matplotlib to make ternary plots plots in the two dimensional simplex projected onto a two dime

Joyplots in Python with matplotlib & pandas :chart_with_upwards_trend:
Joyplots in Python with matplotlib & pandas :chart_with_upwards_trend:

JoyPy JoyPy is a one-function Python package based on matplotlib + pandas with a single purpose: drawing joyplots (a.k.a. ridgeline plots). The code f

A python package for animating plots build on matplotlib.
A python package for animating plots build on matplotlib.

animatplot A python package for making interactive as well as animated plots with matplotlib. Requires Python = 3.5 Matplotlib = 2.2 (because slider

matplotlib: plotting with Python
matplotlib: plotting with Python

Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python. Check out our home page for more inform

Statistical data visualization using matplotlib

seaborn: statistical data visualization Seaborn is a Python visualization library based on matplotlib. It provides a high-level interface for drawing

:small_red_triangle: Ternary plotting library for python with matplotlib
:small_red_triangle: Ternary plotting library for python with matplotlib

python-ternary This is a plotting library for use with matplotlib to make ternary plots plots in the two dimensional simplex projected onto a two dime

Joyplots in Python with matplotlib & pandas :chart_with_upwards_trend:
Joyplots in Python with matplotlib & pandas :chart_with_upwards_trend:

JoyPy JoyPy is a one-function Python package based on matplotlib + pandas with a single purpose: drawing joyplots (a.k.a. ridgeline plots). The code f

A python package for animating plots build on matplotlib.
A python package for animating plots build on matplotlib.

animatplot A python package for making interactive as well as animated plots with matplotlib. Requires Python = 3.5 Matplotlib = 2.2 (because slider

Painlessly create beautiful matplotlib plots.
Painlessly create beautiful matplotlib plots.

Announcement Thank you to everyone who has used prettyplotlib and made it what it is today! Unfortunately, I no longer have the bandwidth to maintain

Comments
Releases(v1.4.3)
Owner
Machine Learning and Data Analytics Lab FAU
Public projects of the Machine Learning and Data Analytics Lab at the Friedrich-Alexander-University Erlangen-Nürnberg
Machine Learning and Data Analytics Lab FAU
Python library that makes it easy for data scientists to create charts.

Chartify Chartify is a Python library that makes it easy for data scientists to create charts. Why use Chartify? Consistent input data format: Spend l

Spotify 3.2k Jan 01, 2023
Param: Make your Python code clearer and more reliable by declaring Parameters

Param Param is a library providing Parameters: Python attributes extended to have features such as type and range checking, dynamically generated valu

HoloViz 304 Jan 07, 2023
:bowtie: Create a dashboard with python!

Installation | Documentation | Gitter Chat | Google Group Bowtie Introduction Bowtie is a library for writing dashboards in Python. No need to know we

Jacques Kvam 753 Dec 22, 2022
An open-source tool for visual and modular block programing in python

PyFlow PyFlow is an open-source tool for modular visual programing in python ! Although for now the tool is in Beta and features are coming in bit by

1.1k Jan 06, 2023
simple tool to paint axis x and y

simple tool to paint axis x and y

G705 1 Oct 21, 2021
coordinate to draw the nimbus logo on the graffitiwall

This is a community effort to draw the nimbus logo on beaconcha.in's graffitiwall. get started clone repo with git clone https://github.com/tennisbowl

4 Apr 04, 2022
Arras.io Highest Scores Over Time Bar Chart Race

Arras.io Highest Scores Over Time Bar Chart Race This repo contains a python script (make_racing_bar_chart.py) that can generate a csv file which can

Road 2 Jan 16, 2022
Project coded in Python using Pandas to look at changes in chase% for batters facing a pitcher first time through the order vs. thrid time

Project coded in Python using Pandas to look at changes in chase% for batters facing a pitcher first time through the order vs. thrid time

Jason Kraynak 1 Jan 07, 2022
A high-level plotting API for pandas, dask, xarray, and networkx built on HoloViews

hvPlot A high-level plotting API for the PyData ecosystem built on HoloViews. Build Status Coverage Latest dev release Latest release Docs What is it?

HoloViz 694 Jan 04, 2023
Plot-configurations for scientific publications, purely based on matplotlib

TUEplots Plot-configurations for scientific publications, purely based on matplotlib. Usage Please have a look at the examples in the example/ directo

Nicholas Krämer 487 Jan 08, 2023
Visualization Website by using Dash and Heroku

Visualization Website by using Dash and Heroku You can visit the website https://payroll-expense-analysis.herokuapp.com/ In this project, I am interes

YF Liu 1 Jan 14, 2022
Movie recommendation using RASA, TigerGraph

Demo run: The below video will highlight the runtime of this setup and some sample real-time conversations using the power of RASA + TigerGraph, Steps

Sudha Vijayakumar 3 Sep 10, 2022
This tool is designed to help administrators get an overview of their Active Directory structure.

This tool is designed to help administrators get an overview of their Active Directory structure. In the group view you can see all elements of an AD (OU, USER, GROUPS, COMPUTERS etc.). In the user v

deexno 2 Oct 30, 2022
The Spectral Diagram (SD) is a new tool for the comparison of time series in the frequency domain

The Spectral Diagram (SD) is a new tool for the comparison of time series in the frequency domain. The SD provides a novel way to display the coherence function, power, amplitude, phase, and skill sc

Mabel 3 Oct 10, 2022
Flipper Zero documentation repo

Flipper Zero Docs Participation To fix a bug or add something new to this repository, you need to open a pull-request. Also, on every page of the site

Flipper Zero (All Repositories will be public soon) 114 Dec 30, 2022
Python implementation of the Density Line Chart by Moritz & Fisher.

PyDLC - Density Line Charts with Python Python implementation of the Density Line Chart (Moritz & Fisher, 2018) to visualize large collections of time

Charles L. Bérubé 10 Jan 06, 2023
An application that allows you to design and test your own stock trading algorithms in an attempt to beat the market.

StockBot is a Python application for designing and testing your own daily stock trading algorithms. Installation Use the

Ryan Cullen 280 Dec 19, 2022
Decision Border Visualizer for Classification Algorithms

dbv Decision Border Visualizer for Classification Algorithms Project description A python package for Machine Learning Engineers who want to visualize

Sven Eschlbeck 1 Nov 01, 2021
Learning Convolutional Neural Networks with Interactive Visualization.

CNN Explainer An interactive visualization system designed to help non-experts learn about Convolutional Neural Networks (CNNs) For more information,

Polo Club of Data Science 6.3k Jan 01, 2023
🧇 Make Waffle Charts in Python.

PyWaffle PyWaffle is an open source, MIT-licensed Python package for plotting waffle charts. It provides a Figure constructor class Waffle, which coul

Guangyang Li 528 Jan 02, 2023