A visualisation tool for Deep Reinforcement Learning

Related tags

Deep Learningdrlvis
Overview

DRLVIS - Visualising Deep Reinforcement Learning


Created by Marios Sirtmatsis with the support of Alex Bäuerle.

DRLVis is an application used for visualising deep reinforcement learning. The goal is to enable developers to get a further understanding of broadly used algorithms across the deep reinforcement learning landscape. Also DRLVis shall provide a tool for researchers and developers to help them understand errors in their implemented algorithms.

Installation

  1. Install the drlvis pip package by using the following command pip install -e drlvis from the directory above the drlvis directory
  2. After that simply run drlvis --logdir @PATH_TO_LOGDIR
  3. Open your browser on http://localhost:8000

Implementation

Architecture

The application is split into a backend and a fronted, where the backend does most of the data preprocessing. The frontend provides meaningful visualisations for further understanding of what the agent is doing, how rewards, weights and actions develop over time and how confident the agent is in selecting its actions.

Workflow for using DRLVis

  1. Train agent and log data
  2. Run drlvis
  3. Interpret meaningful visualisations in your browser

Logging

Logging for the use of drlvis is done by logger.py. The file contains a documentation on which values should be passed for logging. Thlogger.py contains an individual function for every loggable value/values. Some (the most important) of these functions are:


def create_logger(logdir)

The create_logger() function has to be used for initializing the logger and specifying the target destination of the logging directory. It is always important, that the logdir either does not exist yet or is an empty directory.


def log_episode_return(episode_return, episode_count)

With log_episode_return() one is able to log the accumulated reward per episode, with the step being the curresponding current episode count.


def log_action_divergence(action_probs, action_probs_old, episode_count, apply_softmax )

With log_action_divergence() one can calculate the divergence between actions in the current episode and actions in the last episode. Therefore the action_probabilities for each observation per timestep in an episode has to be collected. In the end of an episode this collection of action probabilites and the collection from the episode before can be passed to the log_action_divergence() method, which then calculates the kl divergence between action probabilities of the last episode and the current episode. Example code snippet with a model with softmax activation in the last layer:


def log_frame(frame, episode_count, step)

Using log_frame() one can log the frame which is currently being observed, or which corresponds with the current timestep. The episode count is the current episode and the step is the timestep within the episode on which the frame is being observed or corresponds with.


from drlvis import logger
import numpy as np

probs_curr = []

for episode in range(episode_range):

    for timestep in range(optional_timestep_range):
    
        if end_of_current_episode: #done in openai gym
            if episode >= 1:
                logger.log_action_divergence(probs_old, probs_curr, episode)
            probs_old = probs_curr

        probs_curr.append(model(observation[np.newaxis,:]))

def log_action_probs(predictions, episode_count, step, apply_softmax)

One can use log_action_probs() for logging the predictions of ones model for the currently observed timestep in an episode. If the model does not output probabilites, one can set apply_softmax to True for creating probabilities based on predictions.


def log_experiment_random_states(random_state_samples, predicted_dists, obs_min, obs_max, episode_num, state_meanings, apply_softmax)

The log_experiment_random_states()function takes a highdimensional array containing randomly generated states in bounds of the environments capabilities. (obs_min, obs_max) It also needs the episode in which a random states experiment shall be performed. The function then reduces the dimensions to two dimensions with UMAP for visualisation purposes. The state meanings can be passed for easier environments to reflect what the different states mean. A random state experiment itself is just a method to evaluate the agents confidence in selecting certain actions for randomly generated states. Example code snippet:

from drlvis import logger
import numpy as np

def random_states_experiment(model, episode_num):
   
    obs_space = env.observation_space
    obs_min = obs_space.low
    obs_max = obs_space.high


    num_samples = 10000 # can be an arbitrary number
    random_state_samples = np.random.uniform(
        low=obs_min, high=obs_max, size=(num_samples, len(obs_min)))

    predicted_dists = model(random_state_samples)
   
    logger.log_experiment_random_states(random_state_samples, predicted_dists, obs_min, obs_max, episode_num, [])

def log_action_distribution(actions, episode_count)

The log_action_distribution() function calculates the distribution of actions in the specified episode. Therefore one solely has to pass the actions, which where selected in the current episode episode_count


def log_weights(weight_tensor, step, episode_count)

With log_weights()one can log the weights of the last layer of ones model in a given timestep in an episode. This can be done as follows (model is keras model but not of major importance):

from drlvis import logger

weights = agent.model.weights[-2].numpy()
logger.log_weights(weight_tensor=weights, step=timestep ,episode_count=episode)

Examples

Examples on how to use the logger functions in real DRL implementations can be found in the examples folder that contains simple cartpole implementation in dqn_cartpole.ipynb and a more complex DQN implementation for playing Atari Breakout in dqn/.

Bachelor Thesis

For further information on how to use DRLVis and details about the application, I refer to my bachelor thesis located at documents/bachelor_thesis_visdrl.pdf.

License

MIT

Owner
Marios Sirtmatsis
Marios Sirtmatsis
YolactEdge: Real-time Instance Segmentation on the Edge

YolactEdge, the first competitive instance segmentation approach that runs on small edge devices at real-time speeds. Specifically, YolactEdge runs at up to 30.8 FPS on a Jetson AGX Xavier (and 172.7

Haotian Liu 1.1k Jan 06, 2023
Contains supplementary materials for reproduce results in HMC divergence time estimation manuscript

Scalable Bayesian divergence time estimation with ratio transformations This repository contains the instructions and files to reproduce the analyses

Suchard Research Group 1 Sep 21, 2022
Pytorch implementation of AREL

Status: Archive (code is provided as-is, no updates expected) Agent-Temporal Attention for Reward Redistribution in Episodic Multi-Agent Reinforcement

8 Nov 25, 2022
Freecodecamp Scientific Computing with Python Certification; Solution for Challenge 2: Time Calculator

Assignment Write a function named add_time that takes in two required parameters and one optional parameter: a start time in the 12-hour clock format

Hellen Namulinda 0 Feb 26, 2022
The Hailo Model Zoo includes pre-trained models and a full building and evaluation environment

Hailo Model Zoo The Hailo Model Zoo provides pre-trained models for high-performance deep learning applications. Using the Hailo Model Zoo you can mea

Hailo 50 Dec 07, 2022
Python script to download the celebA-HQ dataset from google drive

download-celebA-HQ Python script to download and create the celebA-HQ dataset. WARNING from the author. I believe this script is broken since a few mo

133 Dec 21, 2022
Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation

UTNet (Accepted at MICCAI 2021) Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation Introduction Transf

110 Jan 01, 2023
This project aims to be a handler for input creation and running of multiple RICEWQ simulations.

What is autoRICEWQ? This project aims to be a handler for input creation and running of multiple RICEWQ simulations. What is RICEWQ? From the descript

Yass Fuentes 1 Feb 01, 2022
Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images

BlockGAN Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images BlockGAN: Learning 3D Object-aware Scene Rep

41 May 18, 2022
A map update dataset and benchmark

MUNO21 MUNO21 is a dataset and benchmark for machine learning methods that automatically update and maintain digital street map datasets. Previous dat

16 Nov 30, 2022
Self-Supervised Collision Handling via Generative 3D Garment Models for Virtual Try-On

Self-Supervised Collision Handling via Generative 3D Garment Models for Virtual Try-On [Project website] [Dataset] [Video] Abstract We propose a new g

71 Dec 24, 2022
ICCV2021 Papers with Code

ICCV2021 Papers with Code

Amusi 1.4k Jan 02, 2023
Breast-Cancer-Prediction

Breast-Cancer-Prediction Trying to predict whether the cancer is benign or malignant using REGRESSION MODELS in Python. Team Members NAME ROLL-NUMBER

Shyamdev Krishnan J 3 Feb 18, 2022
CNN visualization tool in TensorFlow

tf_cnnvis A blog post describing the library: https://medium.com/@falaktheoptimist/want-to-look-inside-your-cnn-we-have-just-the-right-tool-for-you-ad

InFoCusp 778 Jan 02, 2023
People movement type classifier with YOLOv4 detection and SORT tracking.

Movement classification The goal of this project would be movement classification of people, in other words, walking (normal and fast) and running. Yo

4 Sep 21, 2021
GB-CosFace: Rethinking Softmax-based Face Recognition from the Perspective of Open Set Classification

GB-CosFace: Rethinking Softmax-based Face Recognition from the Perspective of Open Set Classification This is the official pytorch implementation of t

Alibaba Cloud 5 Nov 14, 2022
UpChecker is a simple opensource project to host it fast on your server and check is server up, view statistic, get messages if it is down. UpChecker - just run file and use project easy

UpChecker UpChecker is a simple opensource project to host it fast on your server and check is server up, view statistic, get messages if it is down.

Yan 4 Apr 07, 2022
GLM (General Language Model)

GLM GLM is a General Language Model pretrained with an autoregressive blank-filling objective and can be finetuned on various natural language underst

THUDM 421 Jan 04, 2023
Individual Treatment Effect Estimation

CAPE Individual Treatment Effect Estimation Run CAPE python train_causal.py --loop 10 -m cape_cau -d NI --i_t 1 Run a baseline model python train_cau

S. Deng 4 Sep 02, 2022
PyTorch implementations of the NeRF model described in "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis"

PyTorch NeRF and pixelNeRF NeRF: Tiny NeRF: pixelNeRF: This repository contains minimal PyTorch implementations of the NeRF model described in "NeRF:

Michael A. Alcorn 178 Dec 20, 2022