Instance-based label smoothing for improving deep neural networks generalization and calibration

Overview

Instance-based Label Smoothing for Neural Networks

  • Pytorch Implementation of the algorithm.
  • This repository includes a new proposed method for instance-based label smoothing in neural networks, where the target probability distribution is not uniformly distributed among incorrect classes. Instead, each incorrect class is going to be assigned a target probability that is proportional to the output score of this particular class relative to all the remaining classes for a network trained with vanilla cross-entropy loss on the hard target labels.
Instance-based Label Smoothing idea
  • The following figure summarizes the idea of our instance-based label smoothing that aims to keep the information about classes similarity structure while training using label smoothing.
Instance-based Label Smoothing process

Requirements

  • Python 3.x
  • pandas
  • numpy
  • pytorch

Usage

Datasets

  • CIFAR10 / CIFAR100 / FashionMNIST

Files Content

The project have a structure as below:

├── Vanilla-cross-entropy.py
├── Label-smoothing.py
├── Instance-based-smoothing.py
├── Models-evaluation.py
├── Network-distillation.py
├── utils
│   ├── data_loader.py
│   ├── utils.py
│   ├── evaluate.py
│   ├── params.json
├── models
│   ├── resnet.py
│   ├── densenet.py
│   ├── inception.py
│   ├── shallownet.py

Vanilla-cross-entropy.py is the file used for training the networks using cross-entropy without label smoothing.
Label-smoothing.py is the file used for training the networks using cross-entropy with standard label smoothing.
Instance-based-smoothing.py is the file used for training the networks using cross-entropy with instance-based label smoothing.
Models-evaluation.py is the file used for evaluation of the trained networks.
Network-distillation.py is the file used for distillation of trained networks into a shallow convolutional network of 5 layers.
models/ includes all the implementations of the different architectures used in our evaluation like ResNet, DenseNet, Inception-V4. Also, the shallow-cnn student network used in distillation experiments.
utils/ includes all utilities functions required for the different models training and evaluation.

Example

python Instance-based-smoothing.py --dataset cifar10 --model resnet18 --num_classes 10

List of Arguments accepted for Codes of Training and Evaluation of Different Models:

--lr type = float, default = 0.1, help = Starting learning rate (A weight decay of $1e^{-4}$ is used).
--tr_size type = float, default = 0.8, help = Size of training set split out of the whole training set (0.2 for validation).
--batch_size type = int, default = 512, help = Batch size of mini-batch training process.
--epochs type = int, default = 100, help = Number of training epochs.
--estop type = int, default = 10, help = Number of epochs without loss improvement leading to early stopping.
--ece_bins type = int, default = 10, help = Number of bins for expected calibration error calculation.
--dataset, type=str, help=Name of dataset to be used (cifar10/cifar100/fashionmnist).
--num_classes type = int, default = 10, help = Number of classes in the dataset.
--model, type=str, help=Name of the model to be trained. eg: resnet18 / resnet50 / inceptionv4 / densetnet (works for FashionMNIST only).

Results

  • Results of the comparison of different methods on 3 datasets using 4 different architectures are reported in the following table.
  • The experiments were repeated 3 times, and average $\pm$ stdev of log loss, expected calibration error (ECE), accuracy, distilled student network accuracy and distilled student log loss metrics are reported.
  • A t-sne visualization for the logits of 3-different classes in CIFAR-10 can be shown below:
Owner
Mohamed Maher
Junior Research Fellow
Mohamed Maher
SAT Project - The first project I had done at General Assembly, performed EDA, data cleaning and created data visualizations

Project 1: Standardized Test Analysis by Adam Klesc Overview This project covers: Basic statistics and probability Many Python programming concepts Pr

Adam Muhammad Klesc 1 Jan 03, 2022
Code for "Universal inference meets random projections: a scalable test for log-concavity"

How to use this repository This repository contains code to replicate the results of "Universal inference meets random projections: a scalable test fo

Robin Dunn 0 Nov 21, 2021
Deploy recommendation engines with Edge Computing

RecoEdge: Bringing Recommendations to the Edge A one stop solution to build your recommendation models, train them and, deploy them in a privacy prese

NimbleEdge 131 Jan 02, 2023
Official implementation of FCL-taco2: Fast, Controllable and Lightweight version of Tacotron2 @ ICASSP 2021

FCL-Taco2: Towards Fast, Controllable and Lightweight Text-to-Speech synthesis (ICASSP 2021) Paper | Demo Block diagram of FCL-taco2, where the decode

Disong Wang 39 Sep 28, 2022
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022
Image restoration with neural networks but without learning.

Warning! The optimization may not converge on some GPUs. We've personally experienced issues on Tesla V100 and P40 GPUs. When running the code, make s

Dmitry Ulyanov 7.4k Jan 01, 2023
NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM

NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM Automatic Evaluation Metric described in the papers BaryScore (EM

Pierre Colombo 28 Dec 28, 2022
An LSTM based GAN for Human motion synthesis

GAN-motion-Prediction An LSTM based GAN for motion synthesis has a few issues reading H3.6M data from A.Jain et al , will fix soon. Prediction of the

Amogh Adishesha 9 Jun 17, 2022
[CVPR 2022] Official PyTorch Implementation for "Reference-based Video Super-Resolution Using Multi-Camera Video Triplets"

Reference-based Video Super-Resolution (RefVSR) Official PyTorch Implementation of the CVPR 2022 Paper Project | arXiv | RealMCVSR Dataset This repo c

Junyong Lee 151 Dec 30, 2022
This repository contains the code for the CVPR 2020 paper "Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision"

Differentiable Volumetric Rendering Paper | Supplementary | Spotlight Video | Blog Entry | Presentation | Interactive Slides | Project Page This repos

697 Jan 06, 2023
Editing a classifier by rewriting its prediction rules

This repository contains the code and data for our paper: Editing a classifier by rewriting its prediction rules Shibani Santurkar*, Dimitris Tsipras*

Madry Lab 86 Dec 27, 2022
Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning

Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning This is the code for implementing the MADDPG algorithm presented in

97 Dec 21, 2022
True per-item rarity for Loot

True-Rarity True per-item rarity for Loot (For Adventurers) and More Loot A.K.A mLoot each out/true_rarity_{item_type}.json file contains probabilitie

Dan R. 3 Jul 26, 2022
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
Remote sensing change detection using PaddlePaddle

Change Detection Laboratory Developing and benchmarking deep learning-based remo

Lin Manhui 15 Sep 23, 2022
Project NII pytorch scripts

project-NII-pytorch-scripts By Xin Wang, National Institute of Informatics, since 2021 I am a new pytorch user. If you have any suggestions or questio

Yamagishi and Echizen Laboratories, National Institute of Informatics 184 Dec 23, 2022
PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-supervised ViT.

MAE for Self-supervised ViT Introduction This is an unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-sup

36 Oct 30, 2022
African language Speech Recognition - Speech-to-Text

Swahili-Speech-To-Text Table of Contents Swahili-Speech-To-Text Overview Scenario Approach Project Structure data: models: notebooks: scripts tests: l

2 Jan 05, 2023
🤖 Project template for your next awesome AI project. 🦾

🤖 AI Awesome Project Template 👋 Template author You may want to adjust badge links in a README.md file. 💎 Installation with pip Installation is as

Wiktor Łazarski 18 Nov 23, 2022
Chainer Implementation of Semantic Segmentation using Adversarial Networks

Semantic Segmentation using Adversarial Networks Requirements Chainer (1.23.0) Differences Use of FCN-VGG16 instead of Dilated8 as Segmentor. Caution

Taiki Oyama 99 Jun 28, 2022