Official codebase for ICLR oral paper Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling

Related tags

Deep Learningcliora
Overview

CLIORA

This is the official codebase for ICLR oral paper: Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling.

We introduce a new task of Unsupervised Vision-Language Grammar Induction and devise a model Contrastive Language-Image inside-Outside Recursive Autoencoder (CLIORA) to solve it. Please read our paper for more details: https://openreview.net/forum?id=N0n_QyQ5lBF.

This code follows the implementation architecture of DIORA.

Please cite our paper as follows:

@inproceedings{wan2022cliora,
  title={Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling},
  author={Wan, Bo and Han, Wenjuan and Zheng, Zilong and Tuytelaars, Tinne},
  booktitle={The International Conference on Learning Representations (ICLR)},
  year={2022},
}

Envs and Datas

Install dependencies (using Conda as a virtual environment):

conda create -n cliora python=3.8
source activate cliora
pip install -r requirements.txt

Download flickr_data and outputs and put the files as the following structure:

  cliora
  ├───cliora
  │   ├─...
  │
  ├───flickr_data
  │   ├─flickr_feat_maf
  │
  ├───outputs
      ├─flickr

We use the same object features as MAF. Download train_features_compress.hdf5, val features_compress.hdf5, test features_compress.hdf5 to flickr_data/flickr_feat_maf.

Running CLIORA

export PYTHONPATH=$(pwd):$PYTHONPATH


## Train DIORA
sh train_diora.sh

## Test DIORA
sh test_diora.sh

## Train CLOIRA based on DIORA
sh train_clora.sh

## Test CLIORA 
sh test_cliora.sh

Multi-GPU Training

Single-GPU training:

export CUDA_VISIBLE_DEVICES=0
python -m cliora/scripts/train.py
    --cuda
    ... # other args

Multi-GPU Training:

export CUDA_VISIBLE_DEVICES=0,1,2,3
export NGPUS=4
python -m torch.distributed.launch --nproc_per_node=$NGPUS cliora/scripts/train.py
    --cuda
    --multigpu
    ... # other args

Visualization

Download Flickr30K Entities Dataset and put the image folder flickr_images under flickr_data/. Add --visualize when run test_cliora.sh:

# test_cliora.sh
python cliora/scripts/parse.py
    --cuda
    --visualize
    --obj_feats
    ... # other args

Word Embedding

We provide randomly-initialized word embedding, skip-thoughts embedding and ELMo embedding. If you use ELMo embedding and specify the --elmo_cache_dir, then the context-insensitive ELMo vectors will be cached, making it much faster to load these vectors after the initial usage.

Example Usage:

word_emb=none/skip/elmo

python cliora/scripts/train.py
    --emb word_emb
    ... # other args

License

Copyright 2018, University of Massachusetts Amherst

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Owner
Bo Wan
Visual UnderStanding; Computer Vision
Bo Wan
A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation".

Dual-Contrastive-Learning A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation". Y

hoshi-hiyouga 85 Dec 26, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

MAVE: : A Product Dataset for Multi-source Attribute Value Extraction The dataset contains 3 million attribute-value annotations across 1257 unique ca

Google Research Datasets 89 Jan 08, 2023
Solution to the Weather4cast 2021 challenge

This code was used for the entry by the team "antfugue" for the Weather4cast 2021 Challenge. Below, you can find the instructions for generating predi

Jussi Leinonen 13 Jan 03, 2023
[MedIA2021]MIDeepSeg: Minimally Interactive Segmentation of Unseen Objects from Medical Images Using Deep Learning

MIDeepSeg: Minimally Interactive Segmentation of Unseen Objects from Medical Images Using Deep Learning [MedIA or Arxiv] and [Demo] This repository pr

Healthcare Intelligence Laboratory 92 Dec 08, 2022
Official Repo for ICCV2021 Paper: Learning to Regress Bodies from Images using Differentiable Semantic Rendering

[ICCV2021] Learning to Regress Bodies from Images using Differentiable Semantic Rendering Getting Started DSR has been implemented and tested on Ubunt

Sai Kumar Dwivedi 83 Nov 27, 2022
Code repo for "FASA: Feature Augmentation and Sampling Adaptation for Long-Tailed Instance Segmentation" (ICCV 2021)

FASA: Feature Augmentation and Sampling Adaptation for Long-Tailed Instance Segmentation (ICCV 2021) This repository contains the implementation of th

Yuhang Zang 21 Dec 17, 2022
Code for Discriminative Sounding Objects Localization (NeurIPS 2020)

Discriminative Sounding Objects Localization Code for our NeurIPS 2020 paper Discriminative Sounding Objects Localization via Self-supervised Audiovis

51 Dec 11, 2022
CZU-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 10 wearable inertial sensors

CZU-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 10 wearable inertial sensors   In order to facilitate the res

yujmo 11 Dec 12, 2022
Implementation of the paper "Fine-Tuning Transformers: Vocabulary Transfer"

Transformer-vocabulary-transfer Implementation of the paper "Fine-Tuning Transfo

LEYA 13 Nov 30, 2022
Official code of paper: MovingFashion: a Benchmark for the Video-to-Shop Challenge

SEAM Match-RCNN Official code of MovingFashion: a Benchmark for the Video-to-Shop Challenge paper Installation Requirements: Pytorch 1.5.1 or more rec

HumaticsLAB 31 Oct 10, 2022
CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP

CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP Andreas Fürst* 1, Elisabeth Rumetshofer* 1, Viet Tran1, Hubert Ramsauer1, Fei Tang3, Joh

Institute for Machine Learning, Johannes Kepler University Linz 133 Jan 04, 2023
Probabilistic Programming and Statistical Inference in PyTorch

PtStat Probabilistic Programming and Statistical Inference in PyTorch. Introduction This project is being developed during my time at Cogent Labs. The

Stefano Peluchetti 109 Nov 26, 2022
A Moonraker plug-in for real-time compensation of frame thermal expansion

Frame Expansion Compensation A Moonraker plug-in for real-time compensation of frame thermal expansion. Installation Credit to protoloft, from whom I

58 Jan 02, 2023
EqGAN - Improving GAN Equilibrium by Raising Spatial Awareness

EqGAN - Improving GAN Equilibrium by Raising Spatial Awareness Improving GAN Equilibrium by Raising Spatial Awareness Jianyuan Wang, Ceyuan Yang, Ying

GenForce: May Generative Force Be with You 149 Dec 19, 2022
PyTorch code for ICPR 2020 paper Future Urban Scene Generation Through Vehicle Synthesis

Future urban scene generation through vehicle synthesis This repository contains Pytorch code for the ICPR2020 paper "Future Urban Scene Generation Th

Alessandro Simoni 4 Oct 11, 2021
Generative Flow Networks

Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation Implementation for our paper, submitted to NeurIPS 2021 (also chec

Emmanuel Bengio 381 Jan 04, 2023
MINERVA: An out-of-the-box GUI tool for offline deep reinforcement learning

MINERVA is an out-of-the-box GUI tool for offline deep reinforcement learning, designed for everyone including non-programmers to do reinforcement learning as a tool.

Takuma Seno 80 Nov 06, 2022
Implementation of " SESS: Self-Ensembling Semi-Supervised 3D Object Detection" (CVPR2020 Oral)

SESS: Self-Ensembling Semi-Supervised 3D Object Detection Created by Na Zhao from National University of Singapore Introduction This repository contai

125 Dec 23, 2022
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022
Official PyTorch implementation of CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds

CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds Introduction This is the official PyTorch implementation of o

Yijia Weng 96 Dec 07, 2022