LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models

Overview

LaneDet

Introduction

LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models. Developers can reproduce these SOTA methods and build their own methods.

demo image

Table of Contents

Benchmark and model zoo

Supported backbones:

  • ResNet
  • ERFNet
  • VGG
  • DLA (comming soon)

Supported detectors:

Installation

Clone this repository

git clone https://github.com/turoad/lanedet.git

We call this directory as $LANEDET_ROOT

Create a conda virtual environment and activate it (conda is optional)

conda create -n lanedet python=3.8 -y
conda activate lanedet

Install dependencies

# Install pytorch firstly, the cudatoolkit version should be same in your system. (you can also use pip to install pytorch and torchvision)
conda install pytorch torchvision cudatoolkit=10.1 -c pytorch

# Or you can install via pip
pip install torch torchvision

# Install python packages
python setup.py build develop

Data preparation

CULane

Download CULane. Then extract them to $CULANEROOT. Create link to data directory.

cd $RESA_ROOT
mkdir -p data
ln -s $CULANEROOT data/CULane

For CULane, you should have structure like this:

$CULANEROOT/driver_xx_xxframe    # data folders x6
$CULANEROOT/laneseg_label_w16    # lane segmentation labels
$CULANEROOT/list                 # data lists

Tusimple

Download Tusimple. Then extract them to $TUSIMPLEROOT. Create link to data directory.

cd $RESA_ROOT
mkdir -p data
ln -s $TUSIMPLEROOT data/tusimple

For Tusimple, you should have structure like this:

$TUSIMPLEROOT/clips # data folders
$TUSIMPLEROOT/lable_data_xxxx.json # label json file x4
$TUSIMPLEROOT/test_tasks_0627.json # test tasks json file
$TUSIMPLEROOT/test_label.json # test label json file

For Tusimple, the segmentation annotation is not provided, hence we need to generate segmentation from the json annotation.

python tools/generate_seg_tusimple.py --root $TUSIMPLEROOT
# this will generate seg_label directory

Getting Started

Training

For training, run

python main.py [configs/path_to_your_config] --gpus [gpu_ids]

For example, run

python main.py configs/resa/resa50_culane.py --gpus 0 1 2 3

Testing

For testing, run

python main.py [configs/path_to_your_config] --validate --load_from [path_to_your_model] [gpu_num]

For example, run

python main.py configs/resa/resa50_culane.py --validate --load_from culane_resnet50.pth --gpus 0 1 2 3

Currently, this code can output the visualization result when testing, just add --view. We will get the visualization result in work_dirs/xxx/xxx/visualization.

For example, run

python main.py configs/resa/resa50_culane.py --validate --load_from culane_resnet50.pth --gpus 0 --view

Contributing

We appreciate all contributions to improve LaneDet. Any pull requests or issues are welcomed.

Licenses

This project is released under the Apache 2.0 license.

Acknowledgement

Comments
  • How can I properly change the input image size on CondLane?

    How can I properly change the input image size on CondLane?

    Currently I'm detecting lanes using tools/detect.py.

    For Condlane inference, I changed this

    batch_size=1 # from 8 (for condlane inference)
    

    And tried these configs for FHD input image

    img_height = 1080 # from 320
    img_width = 1920 # from 800
    
    ori_img_h = 1080 # from 590
    ori_img_w = 1920 # from 1640
    
    crop_bbox = [0,540,1920,1080] # from [0, 270, 1640, 590]
    

    Changing img_scale = (800,320) results

    The size of tensor a must match the size of tensor b at non-singleton dimension 3
    

    How can I properly change the input image size (ex. FHD) on CondLane config file?

    opened by parkjbdev 20
  • curvature estimation

    curvature estimation

    Hello, I would like to know if there is any way to get real-time lane detection and curvature detection using deep learning. I have seen traditional computer vision algorithms but I am looking for a Deep Learning model that could help me out with this. Any suggestions will be very helpful. Thanks in advance.

    opened by k-nayak 9
  • Really bad inference results

    Really bad inference results

    The inference outputs from the model are really bad even for very easy images.

    1. Using Laneatt_Res18_Culane straight-lines2-laneatt-res18

    2. Using SCNN_Res50_Culane straight-lines2-scnn-res50

    Any idea why this is happening? I've just done normal inference without any changes.

    opened by sowmen 9
  • ImportError: connot import name 'nms_impl' form partially initialized module 'lanedet.ops' (most likely due to a circular improt)o)

    ImportError: connot import name 'nms_impl' form partially initialized module 'lanedet.ops' (most likely due to a circular improt)o)

    When I run: python tools/detect.py configs/resa/resa34_culane.py --img images --load_from resa_r34_culane.pth --savedir ./vis Traceback (most recent call last): File "D:/XXX/XXX/XXX/lanedet-main/tools/detect.py", line 8, in from lanedet.datasets.process import Process File "D:\XXX\XXX\XXX\lanedet-main\lanedet_init_.py", line 1, in from .ops import * File "D:\XXX\XXX\XXX\lanedet-main\lanedet\ops_init_.py", line 1, in from .nms import nms File "D:\XXX\XXX\XXX\lanedet-main\lanedet\ops\nms.py", line 29, in from . import nms_impl ImportError: cannot import name 'nms_impl' from partially initialized module 'lanedet.ops' (most likely due to a circular import) (D:\XXX\XXX\XXX\lanedet-main\lanedet\ops_init_.py)

    opened by readerrubic 8
  • custom image size for resa !

    custom image size for resa !

    Hello,

    I have tried testing with the CULane dataset with rsea and it is working well with the example video_example/05081544_0305/
    With the following image configuration: img_height = 288 img_width = 800 cut_height = 240 ori_img_h = 590 ori_img_w = 1640

    05081544_0305-000073

    But with custom image of configurations: img_height = 288 img_width = 800 cut_height = 240 ori_img_h = 1208 // 590 ori_img_w = 1920 //1640

    With above parameters: custom image 05081544_0305-000001

    With defaut parameters: custom image 05081544_0305-000001

    Could you please assist me which params needs to be tuned.

    Appreciate any response.

    Regards, Ajay

    opened by ajay1606 7
  • Can't convert the model to onnx

    Can't convert the model to onnx

    `sample_input = torch.rand((32, 3, 3, 3))

    torch.onnx.export( net1.module, # PyTorch Model sample_input, # Input tensor '/content/drive/MyDrive/MobileNetV2-model-onnx.onnx', # Output file (eg. 'output_model.onnx') opset_version = 12, # Operator support version input_names = ['input'], # Input tensor name (arbitary) output_names = ['output'] # Output tensor name (arbitary) )`

    Got this Error:

    TypeError Traceback (most recent call last) in () 5 opset_version=12, # Operator support version 6 input_names=['input'], # Input tensor name (arbitary) ----> 7 output_names=['output'] # Output tensor name (arbitary) 8 )

     21     def forward(self, batch):
     22         output = {}
    

    ---> 23 fea = self.backbone(batch['img']) 24 25 if self.aggregator:

    TypeError: new(): invalid data type 'str'

    enhancement 
    opened by AbdulFMS 6
  • HELP! A circular import error message appears in nms.py

    HELP! A circular import error message appears in nms.py

    from . import nms_impl ImportError: cannot import name 'nms_impl' from partially initialized module 'la nedet.ops' (most likely due to a circular import) (D:\lanedet-main\lanedet\ops_ init_.py)

    opened by 13xyz7 6
  • Unable to find model file

    Unable to find model file

    Hello, Thank you so much for sharing a very much useful repository.

    I have followed the step by step instructions given, and have downloaded all the datasets as mentioned in the below image

    image

    Training: python main.py configs/resa/resa50_culane.py --gpus 0

    After running the above command, i was able to see following window: image

    But i couldn't find any model file such as culane_resnet50.pth ,resa_r34_culane.pth !! As it mentioned in the example run case.

    Alternatively, is it possible to share the pre-trained model file?

    As I am a beginner, I greatly appreciate your understanding and kind response.

    Regards, Ajay

    opened by ajay1606 5
  • TypeError: expected string or bytes-like object

    TypeError: expected string or bytes-like object

    python setup.py build develop

    File "/home/zzj/anaconda3/envs/Lanedet/lib/python3.8/site-packages/pkg_resources/_vendor/packaging/version.py", line 275, in init match = self._regex.search(version) TypeError: expected string or bytes-like object

    ubuntu20.04 what can i do?

    opened by hzzzzjzyq 5
  • Error

    Error

    if don't modify (from .nms import nms) from lanedet/ops/init.py to (from . import *) there will be an error. and if don't modify (from . import nms_impl) from lanedet/ops/nms.py to (from . import *) there will be an error. And when run inference, there is no lanedet directory in the tools directory, resulting in module error from lanedet/tools/detect.py line 8~12. Is there any other way to remove the error?

    opened by gui-hoon 5
  • Mobilenetv2 for condlane got error.

    Mobilenetv2 for condlane got error.

    Hey @Turoad, thanks for your work, it's very useful. I recently customized to train condlane with mobilenetv2 backbone but got this error!!

    Traceback (most recent call last):
      File "main.py", line 65, in <module>
        main()
      File "main.py", line 35, in main
        runner.train()
      File "/mnt/09a762a6-3f6e-469b-8d6d-e9fa625e24b9/USER/LuanDD/lanedet/lanedet/engine/runner.py", line 94, in train
        self.train_epoch(epoch, train_loader)
      File "/mnt/09a762a6-3f6e-469b-8d6d-e9fa625e24b9/USER/LuanDD/lanedet/lanedet/engine/runner.py", line 67, in train_epoch
        output = self.net(data)
      File "/mnt/09a762a6-3f6e-469b-8d6d-e9fa625e24b9/USER/LuanDD/pyenv/lib/python3.6/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
        result = self.forward(*input, **kwargs)
      File "/mnt/09a762a6-3f6e-469b-8d6d-e9fa625e24b9/USER/LuanDD/pyenv/lib/python3.6/site-packages/mmcv/parallel/data_parallel.py", line 42, in forward
        return super().forward(*inputs, **kwargs)
      File "/mnt/09a762a6-3f6e-469b-8d6d-e9fa625e24b9/USER/LuanDD/pyenv/lib/python3.6/site-packages/torch/nn/parallel/data_parallel.py", line 165, in forward
        return self.module(*inputs[0], **kwargs[0])
      File "/mnt/09a762a6-3f6e-469b-8d6d-e9fa625e24b9/USER/LuanDD/pyenv/lib/python3.6/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
        result = self.forward(*input, **kwargs)
      File "/mnt/09a762a6-3f6e-469b-8d6d-e9fa625e24b9/USER/LuanDD/lanedet/lanedet/models/nets/detector.py", line 29, in forward
        fea = self.neck(fea)
      File "/mnt/09a762a6-3f6e-469b-8d6d-e9fa625e24b9/USER/LuanDD/pyenv/lib/python3.6/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
        result = self.forward(*input, **kwargs)
      File "/mnt/09a762a6-3f6e-469b-8d6d-e9fa625e24b9/USER/LuanDD/lanedet/lanedet/models/necks/fpn.py", line 113, in forward
        assert len(inputs) >= len(self.in_channels)
    AssertionError
    

    Can you help me clarify it? This is my config

    net = dict(
        type='Detector',
    )
    
    backbone = dict(
        type='MobileNet',
        net='MobileNetV2',
        pretrained=True,
        # replace_stride_with_dilation=[False, False, False],
        out_conv=False,
        # in_channels=[64, 128, 256, 512]
    )
    
    featuremap_out_channel = 1280
    featuremap_out_stride = 32 
    
    sample_y = range(590, 270, -8)
    
    batch_size = 8
    aggregator = dict(
        type='TransConvEncoderModule',
        in_dim=1280,
        attn_in_dims=[1280, 64],
        attn_out_dims=[64, 64],
        strides=[1, 1],
        ratios=[4, 4],
        pos_shape=(batch_size, 10, 25),
    )
    
    neck=dict(
        type='FPN',
        in_channels=[64, 128, 256, 64],
        out_channels=64,
        num_outs=4,
        #trans_idx=-1,
    )
    
    loss_weights=dict(
            hm_weight=1,
            kps_weight=0.4,
            row_weight=1.,
            range_weight=1.,
        )
    
    num_lane_classes=1
    heads=dict(
        type='CondLaneHead',
        heads=dict(hm=num_lane_classes),
        in_channels=(64, ),
        num_classes=num_lane_classes,
        head_channels=64,
        head_layers=1,
        disable_coords=False,
        branch_in_channels=64,
        branch_channels=64,
        branch_out_channels=64,
        reg_branch_channels=64,
        branch_num_conv=1,
        hm_idx=2,
        mask_idx=0,
        compute_locations_pre=True,
        location_configs=dict(size=(batch_size, 1, 80, 200), device='cuda:0')
    )
    
    optimizer = dict(type='AdamW', lr=3e-4, betas=(0.9, 0.999), eps=1e-8)
    optimizer = dict(type='SGD', lr=3e-3)
    
    epochs = 40
    total_iter = (88880 // batch_size) * epochs
    total_iter = (3688 // batch_size) * epochs
    
    import math
    scheduler = dict(
        type = 'MultiStepLR',
        milestones=[15, 25, 35],
        gamma=0.1
    )
    
    seg_loss_weight = 1.0
    eval_ep = 1
    save_ep = 1 
    
    img_norm = dict(
        mean=[75.3, 76.6, 77.6],
        std=[50.5, 53.8, 54.3]
    )
    
    img_height = 320 
    img_width = 800
    cut_height = 0 
    ori_img_h = 590
    ori_img_w = 1640
    
    mask_down_scale = 4
    hm_down_scale = 16
    num_lane_classes = 1
    line_width = 3
    radius = 6
    nms_thr = 4
    img_scale = (800, 320)
    crop_bbox = [0, 270, 1640, 590]
    mask_size = (1, 80, 200)
    
    train_process = [
        dict(type='Alaug',
        transforms=[dict(type='Compose', params=dict(bboxes=False, keypoints=True, masks=False)),
        dict(
            type='Crop',
            x_min=crop_bbox[0],
            x_max=crop_bbox[2],
            y_min=crop_bbox[1],
            y_max=crop_bbox[3],
            p=1),
        dict(type='Resize', height=img_scale[1], width=img_scale[0], p=1),
        dict(
            type='OneOf',
            transforms=[
                dict(
                    type='RGBShift',
                    r_shift_limit=10,
                    g_shift_limit=10,
                    b_shift_limit=10,
                    p=1.0),
                dict(
                    type='HueSaturationValue',
                    hue_shift_limit=(-10, 10),
                    sat_shift_limit=(-15, 15),
                    val_shift_limit=(-10, 10),
                    p=1.0),
            ],
            p=0.7),
        dict(type='JpegCompression', quality_lower=85, quality_upper=95, p=0.2),
        dict(
            type='OneOf',
            transforms=[
                dict(type='Blur', blur_limit=3, p=1.0),
                dict(type='MedianBlur', blur_limit=3, p=1.0)
            ],
            p=0.2),
        dict(type='RandomBrightness', limit=0.2, p=0.6),
        dict(
            type='ShiftScaleRotate',
            shift_limit=0.1,
            scale_limit=(-0.2, 0.2),
            rotate_limit=10,
            border_mode=0,
            p=0.6),
        dict(
            type='RandomResizedCrop',
            height=img_scale[1],
            width=img_scale[0],
            scale=(0.8, 1.2),
            ratio=(1.7, 2.7),
            p=0.6),
        dict(type='Resize', height=img_scale[1], width=img_scale[0], p=1),]
        ),
        dict(type='CollectLane',
            down_scale=mask_down_scale,
            hm_down_scale=hm_down_scale,
            max_mask_sample=5,
            line_width=line_width,
            radius=radius,
            keys=['img', 'gt_hm'],
            meta_keys=[
                'gt_masks', 'mask_shape', 'hm_shape',
                'down_scale', 'hm_down_scale', 'gt_points'
            ]
        ),
        #dict(type='Resize', size=(img_width, img_height)),
        dict(type='Normalize', img_norm=img_norm),
        dict(type='ToTensor', keys=['img', 'gt_hm'], collect_keys=['img_metas']),
    ]
    
    
    val_process = [
        dict(type='Alaug',
            transforms=[dict(type='Compose', params=dict(bboxes=False, keypoints=True, masks=False)),
                dict(type='Crop',
                x_min=crop_bbox[0],
                x_max=crop_bbox[2],
                y_min=crop_bbox[1],
                y_max=crop_bbox[3],
                p=1),
            dict(type='Resize', height=img_scale[1], width=img_scale[0], p=1)]
        ),
        #dict(type='Resize', size=(img_width, img_height)),
        dict(type='Normalize', img_norm=img_norm),
        dict(type='ToTensor', keys=['img']),
    ]
    
    # dataset_path = './data/CULane'
    dataset_path = './data/Merge_data'
    # val_path = './data/CULane'
    dataset = dict(
        train=dict(
            type='CULane',
            data_root=dataset_path,
            split='train',
            processes=train_process,
        ),
        val=dict(
            type='CULane',
            data_root=dataset_path,
            split='test',
            processes=val_process,
        ),
        test=dict(
            type='CULane',
            data_root=dataset_path,
            split='test',
            processes=val_process,
        )
    )
    
    
    workers = 6
    log_interval = 100
    lr_update_by_epoch=True
    

    Thank you so much

    opened by luan1412167 4
  • CondLane如何修改检测的车道线数量?

    CondLane如何修改检测的车道线数量?

    使用测试kaist数据集测试[CondLane],最多只能检测出3条车道线,很明显的车道检测不出来,请问是限制了检测车道线数量了吗,在那里可以配置? https://github.com/Turoad/lanedet/issues/58#issuecomment-1131143127 按照此处的配置方法似乎不管用。 1559193232373910975

    opened by w-jinkui 0
  • PermissionError: [Errno 13] Permission denied: 'C:\\Users\\L00653~1\\AppData\\Local\\Temp\\tmphpklern8\\tmpkydalnxp.py'

    PermissionError: [Errno 13] Permission denied: 'C:\\Users\\L00653~1\\AppData\\Local\\Temp\\tmphpklern8\\tmpkydalnxp.py'

    Traceback (most recent call last): File "tools/detect.py", line 86, in process(args) File "tools/detect.py", line 68, in process cfg = Config.fromfile(args.config) File "d:\lanedet\lanedet\utils\config.py", line 180, in fromfile cfg_dict, cfg_text = Config._file2dict(filename) File "d:\lanedet\lanedet\utils\config.py", line 105, in _file2dict shutil.copyfile(filename, File "C:\Users\l00653465\Anaconda3\envs\lanedet\lib\shutil.py", line 264, in copyfile with open(src, 'rb') as fsrc, open(dst, 'wb') as fdst: PermissionError: [Errno 13] Permission denied: 'C:\Users\L00653~1\AppData\Local\Temp\tmphpklern8\tmpkydalnxp.py'

    在进行训练和测试的时候都会报这个错

    opened by Sober-xz 1
  • KeyError:  Unable to find

    KeyError: Unable to find "net" key in the trained model from detect.py

    Hi Guys,

    I am using this project on conda env with gpu configured. I was trying to just run the inference files first to try it out, but I get the following error:

    Traceback (most recent call last): File "c:\CULane\lanedet\tools\detect.py", line 86, in process(args) File "c:\CULane\lanedet\tools\detect.py", line 72, in process detect = Detect(cfg) File "c:\CULane\lanedet\tools\detect.py", line 24, in init load_network(self.net, self.cfg.load_from) File "c:\culane\lanedet\lanedet\utils\net_utils.py", line 48, in load_network net.load_state_dict(pretrained_model['net'], strict=True) KeyError: 'net'

    I have used following command: $ python detect.py' 'lanedet/configs/resa/resa34_culane.py' '--img' 'image\' '--load_from' 'C:\Users\blackbug\.cache\torch\hub\checkpoints\resnet34-333f7ec4.pth' '--savedir' './vis'

    I tried to look at the model loaded from the downloaded resnet model file; it looks valid with all the trained layers, just "net" isnt part of the dictionary. Any help is appreciated! Thank you!

    opened by kkarnatak 0
Owner
TuZheng
TuZheng
A Kaggle competition: discriminate gender based on handwriting

Gender discrimination based on handwriting See http://fastml.com/gender-discrimination/ for description. prep_data.py - a first step chunk_by_authors.

Zygmunt Zając 22 Jul 20, 2022
existing and custom freqtrade strategies supporting the new hyperstrategy format.

freqtrade-strategies Description Existing and self-developed strategies, rewritten to support the new HyperStrategy format from the freqtrade-develop

39 Aug 20, 2021
Prior-Guided Multi-View 3D Head Reconstruction

Prior-Guided Head MVS This repository includes some reconstruction results of our IEEE TMM 2021 paper, Prior-Guided Multi-View 3D Head Reconstruction.

11 Aug 17, 2022
Static-test - A playground to play with ideas related to testing the comparability of the code

Static test playground ⚠️ The code is just an experiment. Compiles and runs on U

Igor Bogoslavskyi 4 Feb 18, 2022
This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML)

package tests docs license stats support This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML

National Center for Cognitive Research of ITMO University 482 Dec 26, 2022
Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration

This repo is for the paper: Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration The DAC environment is based on the Dynam

Carola Doerr 1 Aug 19, 2022
PyTorch implementation of "Simple and Deep Graph Convolutional Networks"

Simple and Deep Graph Convolutional Networks This repository contains a PyTorch implementation of "Simple and Deep Graph Convolutional Networks".(http

chenm 253 Dec 08, 2022
Continual Learning of Electronic Health Records (EHR).

Continual Learning of Longitudinal Health Records Repo for reproducing the experiments in Continual Learning of Longitudinal Health Records (2021). Re

Jacob 7 Oct 21, 2022
Barlow Twins and HSIC

Barlow Twins and HSIC Unofficial Pytorch implementation for Barlow Twins and HSIC_SSL on small datasets (CIFAR10, STL10, and Tiny ImageNet). Correspon

Yao-Hung Hubert Tsai 49 Nov 24, 2022
Implementation of the paper titled "Using Sampling to Estimate and Improve Performance of Automated Scoring Systems with Guarantees"

Using Sampling to Estimate and Improve Performance of Automated Scoring Systems with Guarantees Implementation of the paper titled "Using Sampling to

MIDAS, IIIT Delhi 2 Aug 29, 2022
Changing the Mind of Transformers for Topically-Controllable Language Generation

We will first introduce the how to run the IPython notebook demo by downloading our pretrained models. Then, we will introduce how to run our training and evaluation code.

IESL 20 Dec 06, 2022
Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021.

SphereRPN Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021. Authors: Th

Thang Vu 15 Dec 02, 2022
A universal framework for learning timestamp-level representations of time series

TS2Vec This repository contains the official implementation for the paper Learning Timestamp-Level Representations for Time Series with Hierarchical C

Zhihan Yue 284 Dec 30, 2022
Computer Vision and Pattern Recognition, NUS CS4243, 2022

CS4243_2022 Computer Vision and Pattern Recognition, NUS CS4243, 2022 Cloud Machine #1 : Google Colab (Free GPU) Follow this Notebook installation : h

Xavier Bresson 142 Dec 15, 2022
This repository contains code released by Google Research.

This repository contains code released by Google Research.

Google Research 26.6k Dec 31, 2022
An onlinel learning to rank python codebase.

OLTR Online learning to rank python codebase. The code related to Pairwise Differentiable Gradient Descent (ranker/PDGDLinearRanker.py) is copied from

ielab 5 Jul 18, 2022
Softlearning is a reinforcement learning framework for training maximum entropy policies in continuous domains. Includes the official implementation of the Soft Actor-Critic algorithm.

Softlearning Softlearning is a deep reinforcement learning toolbox for training maximum entropy policies in continuous domains. The implementation is

Robotic AI & Learning Lab Berkeley 997 Dec 30, 2022
A simple interface for editing natural photos with generative neural networks.

Neural Photo Editor A simple interface for editing natural photos with generative neural networks. This repository contains code for the paper "Neural

Andy Brock 2.1k Dec 29, 2022
Graph-total-spanning-trees - A Python script to get total number of Spanning Trees in a Graph

Total number of Spanning Trees in a Graph This is a python script just written f

Mehdi I. 0 Jul 18, 2022
Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition

Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition Official implementation of the Efficient Conforme

Maxime Burchi 145 Dec 30, 2022