Tensor-Based Quantum Machine Learning

Overview
https://codecov.io/gh/tensorly/quantum/branch/main/graph/badge.svg?token=5P8GZ8YLO7

TensorLy_Quantum

TensorLy-Quantum is a Python library for Tensor-Based Quantum Machine Learning that builds on top of TensorLy and PyTorch.

With TensorLy-Quantum, you can easily:

  • Create large quantum circuit: Tensor network formalism requires up to exponentially less memory for quantum simulation than traditional vector and matrix approaches.
  • Leverage tensor methods: the state vectors are efficiently represented in factorized form as Tensor-Rings (MPS) and the operators as TT-Matrices (MPO)
  • Efficient simulation: tensorly-quantum leverages the factorized structure to efficiently perform quantum simulation without ever forming the full, dense operators and state-vectors
  • Multi-Basis Encoding: we provide multi-basis encoding out-of-the-box for scalable experimentation
  • Solve hard problems: we provide all the tools to solve the MaxCut problem for an unprecendented number of qubits / vertices

Installing TensorLy-Quantum

Through pip

pip install tensorly-quantum

From source

git clone https://github.com/tensorly/quantum
cd quantum
pip install -e .
Comments
  • Rz has no gradient issue resolved

    Rz has no gradient issue resolved

    Hey there, The way RotZ was implemented it didn't have any gradient. I fixed the issue by using the same template as for the RotY and RotX. I think the tl.tensor() in the original version somehow blocked the backprop. The way it is written now the gradient is correct.

    opened by PatrickHuembeli 3
  • calculate_cut in the VQE example?

    calculate_cut in the VQE example?

    Hello! I have been trying to use your code to compute the MaxCut in the VQE jupyter notebook provided in the example sections. I tried to apply the calculate_cut function on the state as tlq.calculate_cut(state, qubits1, qubits2, weights) but I am having the following error TypeError: only integer tensors of a single element can be converted to an index.

    I see that the cut is calculated differently in the MBE example, but I would like to know if there is an analogue way of doing it with the VQE. Or should I just adapt my Hamiltonian to maximize the cut? Any help is appreciated, Thanks!

    opened by marionsilv 2
  • How to use cuQuantum as a backend

    How to use cuQuantum as a backend

    Hi,

    Thank you for your great work! May I know how to use cuQuantum as a backend as mentioned in your paper? Could you please provide a code example? How does the cuQuantum backend support autograd? Thank you very much!

    opened by nadbp 1
  • CNOT gate issue

    CNOT gate issue

    Hello,

    I have been trying to build a circuit with a CNOT gate acting on non-contiguous qubits (e.g., qubit 1 and 4), but I am finding strange results.

    For example, if I choose an initial state [1,0,0,0]

    and apply the unitary uni = tlq.Unitary([tlq.CNOTL(device=device, dtype=dtype), tlq.CNOTR(device=device, dtype=dtype), tlq.IDENTITY(dtype=dtype, device=device), tlq.IDENTITY(dtype=dtype, device=device)], nqubits, ncontraq, device=device, dtype=dtype)

    I get (for the expected value of Sz): tensor([-1., -1., 1., 1.])

    However, if I apply the CNOT cores to non-adjacent qubits in the same initial state, with uni = tlq.Unitary([tlq.CNOTL(device=device, dtype=dtype), tlq.IDENTITY(dtype=dtype, device=device), tlq.IDENTITY(dtype=dtype, device=device), tlq.CNOTR(device=device, dtype=dtype)], nqubits, ncontraq, device=device, dtype=dtype)

    I find, again for the expected value of Sz: tensor([-2., 2., 2., 0.])

    Is there any limitation regarding the CNOT cores that make it only valid for adjacent qubits, or am I doing something wrong? I am attaching a file with the full code for running: code.txt

    Thanks for the help, Marion Silvestrini.

    opened by marionsilv 2
  • Hamiltonian unitary

    Hamiltonian unitary

    Hello all,

    I was wondering if there is a way in TensorLy Quantum to build a parametrised unitary based on a binary Hamiltonian, such as the Ising model given in the examples, for use in the circuits.

    I mean to use it in an application like a QAOA, for instance. Is there a way to adapt from the binary_hamiltonian function, or something like that?

    Thanks!

    opened by rafaeleb 10
Releases(0.1.0)
Owner
TensorLy
Tensor Learning in Python.
TensorLy
[CVPR'22] Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast

wseg Overview The Pytorch implementation of Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast. [arXiv] Though image-level weakly

Ye Du 96 Dec 30, 2022
The easiest tool for extracting radiomics features and training ML models on them.

Simple pipeline for experimenting with radiomics features Installation git clone https://github.com/piotrekwoznicki/ClassyRadiomics.git cd classrad pi

Piotr Woźnicki 17 Aug 04, 2022
Node for thenewboston digital currency network.

Project setup For project setup see INSTALL.rst Community Join the community to stay updated on the most recent developments, project roadmaps, and ra

thenewboston 27 Jul 08, 2022
Who calls the shots? Rethinking Few-Shot Learning for Audio (WASPAA 2021)

rethink-audio-fsl This repo contains the source code for the paper "Who calls the shots? Rethinking Few-Shot Learning for Audio." (WASPAA 2021) Table

Yu Wang 34 Dec 24, 2022
Datasets, tools, and benchmarks for representation learning of code.

The CodeSearchNet challenge has been concluded We would like to thank all participants for their submissions and we hope that this challenge provided

GitHub 1.8k Dec 25, 2022
Tightness-aware Evaluation Protocol for Scene Text Detection

TIoU-metric Release on 27/03/2019. This repository is built on the ICDAR 2015 evaluation code. If you propose a better metric and require further eval

Yuliang Liu 206 Nov 18, 2022
🤖 A Python library for learning and evaluating knowledge graph embeddings

PyKEEN PyKEEN (Python KnowlEdge EmbeddiNgs) is a Python package designed to train and evaluate knowledge graph embedding models (incorporating multi-m

PyKEEN 1.1k Jan 09, 2023
TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffic Environments for IV 2022.

TorchGRL TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffi

XXQQ 42 Dec 09, 2022
ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

Status: Under development (expect bug fixes and huge updates) ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectiv

37 Dec 28, 2022
OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network

Stock Price Prediction of Apple Inc. Using Recurrent Neural Network OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network Dataset:

Nouroz Rahman 410 Jan 05, 2023
Using fully convolutional networks for semantic segmentation with caffe for the cityscapes dataset

Using fully convolutional networks for semantic segmentation (Shelhamer et al.) with caffe for the cityscapes dataset How to get started Download the

Simon Guist 27 Jun 06, 2022
Probabilistic Tensor Decomposition of Neural Population Spiking Activity

Probabilistic Tensor Decomposition of Neural Population Spiking Activity Matlab (recommended) and Python (in developement) implementations of Soulat e

Hugo Soulat 6 Nov 30, 2022
Bot developed in Python that automates races in pegaxy.

español | português About it: This is a fork from pega-racing-bot. This bot, developed in Python, is to automate races in pegaxy. The game developers

4 Apr 08, 2022
FedScale: Benchmarking Model and System Performance of Federated Learning

FedScale: Benchmarking Model and System Performance of Federated Learning (Paper) This repository contains scripts and instructions of building FedSca

268 Jan 01, 2023
A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model.

Semantic Meshes A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model. Paper If you find this framework usefu

Florian 40 Dec 09, 2022
Disease Informed Neural Networks (DINNs) — neural networks capable of learning how diseases spread, forecasting their progression, and finding their unique parameters (e.g. death rate).

DINN We introduce Disease Informed Neural Networks (DINNs) — neural networks capable of learning how diseases spread, forecasting their progression, a

19 Dec 10, 2022
Volumetric parameterization of the placenta to a flattened template

placenta-flattening A MATLAB algorithm for volumetric mesh parameterization. Developed for mapping a placenta segmentation derived from an MRI image t

Mazdak Abulnaga 12 Mar 14, 2022
This repo contains the code required to train the multivariate time-series Transformer.

Multi-Variate Time-Series Transformer This repo contains the code required to train the multivariate time-series Transformer. Download the data The No

Gregory Duthé 4 Nov 24, 2022
A PyTorch Lightning solution to training OpenAI's CLIP from scratch.

train-CLIP 📎 A PyTorch Lightning solution to training CLIP from scratch. Goal ⚽ Our aim is to create an easy to use Lightning implementation of OpenA

Cade Gordon 396 Dec 30, 2022
BaseCls BaseCls 是一个基于 MegEngine 的预训练模型库,帮助大家挑选或训练出更适合自己科研或者业务的模型结构

BaseCls BaseCls 是一个基于 MegEngine 的预训练模型库,帮助大家挑选或训练出更适合自己科研或者业务的模型结构。 文档地址:https://basecls.readthedocs.io 安装 安装环境 BaseCls 需要 Python = 3.6。 BaseCls 依赖 M

MEGVII Research 28 Dec 23, 2022