Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd.

Overview

Head Detector

Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd. The head_detection module can be installed using pip in order to be able to plug-and-play with HeadHunter-T.

Requirements

  1. Nvidia Driver >= 418

  2. Cuda 10.0 and compaitible CudNN

  3. Python packages : To install the required python packages; conda env create -f head_detection.yml.

  4. Use the anaconda environment head_detection by activating it, source activate head_detection or conda activate head_detection.

  5. Alternatively pip can be used to install required packages using pip install -r requirements.txt or update your existing environment with the aforementioned yml file.

Training

  1. To train a model, define environment variable NGPU, config file and use the following command

$python -m torch.distributed.launch --nproc_per_node=$NGPU --use_env train.py --cfg_file config/config_chuman.yaml --world_size $NGPU --num_workers 4

  1. Training is currently supported over (a) ScutHead dataset (b) CrowdHuman + ScutHead combined, (c) Our proposed CroHD dataset. This can be mentioned in the config file.

  2. To train the model, config files must be defined. More details about the config files are mentioned in the section below

Evaluation and Testing

  1. Unlike the training, testing and evaluation does not have a config file. Rather, all the parameters are set as argument variable while executing the code. Refer to the respective files, evaluate.py and test.py.
  2. evaluate.py evaluates over the validation/test set using AP, MMR, F1, MODA and MODP metrics.
  3. test.py runs the detector over a "bunch of images" in the testing set for qualitative evaluation.

Config file

A config file is necessary for all training. It's built to ease the number of arg variable passed during each execution. Each sub-sections are as elaborated below.

  1. DATASET

    1. Set the base_path as the parent directory where the dataset is situated at.
    2. Train and Valid are .txt files that contains relative path to respective images from the base_path defined above and their corresponding Ground Truth in (x_min, y_min, x_max, y_max) format. Generation files for the three datasets can be seen inside data directory. For example,
    /path/to/image.png
    x_min_1, y_min_1, x_max_1, y_max_1
    x_min_2, y_min_2, x_max_2, y_max_2
    x_min_3, y_min_3, x_max_3, y_max_3
    .
    .
    .
    
    1. mean_std are RGB means and stdev of the training dataset. If not provided, can be computed prior to the start of the training
  2. TRAINING

    1. Provide pretrained_model and corresponding start_epoch for resuming.
    2. milestones are epoch at which the learning rates are set to 0.1 * lr.
    3. only_backbone option loads just the Resnet backbone and not the head. Not applicable for mobilenet.
  3. NETWORK

    1. The mentioned parameters are as described in experiment section of the paper.
    2. When using median_anchors, the anchors have to be defined in anchors.py.
    3. We experimented with mobilenet, resnet50 and resnet150 as alternative backbones. This experiment was not reported in the paper due to space constraints. We found the accuracy to significantly decrease with mobilenet but resnet50 and resnet150 yielded an almost same performance.
    4. We also briefly experimented with Deformable Convolutions but again didn't see noticable improvements in performance. The code we used are available in this repository.

Note :

This codebase borrows a noteable portion from pytorch-vision owing to the fact some of their modules cannot be "imported" as a package.

Citation :

@InProceedings{Sundararaman_2021_CVPR,
    author    = {Sundararaman, Ramana and De Almeida Braga, Cedric and Marchand, Eric and Pettre, Julien},
    title     = {Tracking Pedestrian Heads in Dense Crowd},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {3865-3875}
}
Owner
Ramana Sundararaman
Ramana Sundararaman
Image-to-image translation with conditional adversarial nets

pix2pix Project | Arxiv | PyTorch Torch implementation for learning a mapping from input images to output images, for example: Image-to-Image Translat

Phillip Isola 9.3k Jan 08, 2023
A Real-Time-Strategy game for Deep Learning research

Description DeepRTS is a high-performance Real-TIme strategy game for Reinforcement Learning research. It is written in C++ for performance, but provi

Centre for Artificial Intelligence Research (CAIR) 156 Dec 19, 2022
Pytorch implementation of BRECQ, ICLR 2021

BRECQ Pytorch implementation of BRECQ, ICLR 2021 @inproceedings{ li&gong2021brecq, title={BRECQ: Pushing the Limit of Post-Training Quantization by Bl

Yuhang Li 148 Dec 28, 2022
Pairwise model for commonlit competition

Pairwise model for commonlit competition To run: - install requirements - create input directory with train_folds.csv and other competition data - cd

abhishek thakur 45 Aug 31, 2022
Code for Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data? (SDM 2022)

Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data? (SDM 2022) We consider how a user of a web servi

joisino 20 Aug 21, 2022
Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

Text-AutoAugment (TAA) This repository contains the code for our paper Text AutoAugment: Learning Compositional Augmentation Policy for Text Classific

LancoPKU 105 Jan 03, 2023
Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Phil Wang 12.6k Jan 09, 2023
SubOmiEmbed: Self-supervised Representation Learning of Multi-omics Data for Cancer Type Classification

SubOmiEmbed: Self-supervised Representation Learning of Multi-omics Data for Cancer Type Classification

Sayed Hashim 3 Nov 15, 2022
A PyTorch implementation of SIN: Superpixel Interpolation Network

SIN: Superpixel Interpolation Network This is is a PyTorch implementation of the superpixel segmentation network introduced in our PRICAI-2021 paper:

6 Sep 28, 2022
Awesome AI Learning with +100 AI Cheat-Sheets, Free online Books, Top Courses, Best Videos and Lectures, Papers, Tutorials, +99 Researchers, Premium Websites, +121 Datasets, Conferences, Frameworks, Tools

All about AI with Cheat-Sheets(+100 Cheat-sheets), Free Online Books, Courses, Videos and Lectures, Papers, Tutorials, Researchers, Websites, Datasets

Niraj Lunavat 1.2k Jan 01, 2023
PyJokes - Joking around with Python library pyjokes

Hi, it's Muhaimin again 👋 This is something unorthodox but cool. Don't forget t

Muhaimin A. Salay Kanton 1 Feb 02, 2022
AI-Bot - 一个基于watermelon改造的OpenAI-GPT-2的智能机器人

AI-Bot 一个基于watermelon改造的OpenAI-GPT-2的智能机器人 在Binder上直接运行测试 目前有两种实现方式 TF2的GPT-2 TF

9 Nov 16, 2022
This repository contains code, network definitions and pre-trained models for working on remote sensing images using deep learning

Deep learning for Earth Observation This repository contains code, network definitions and pre-trained models for working on remote sensing images usi

Nicolas Audebert 447 Jan 05, 2023
Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning

isvd Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning If you find this code useful, you may cite us as: @inprocee

Sami Abu-El-Haija 16 Jan 08, 2023
Segcache: a memory-efficient and scalable in-memory key-value cache for small objects

Segcache: a memory-efficient and scalable in-memory key-value cache for small objects This repo contains the code of Segcache described in the followi

TheSys Group @ CMU CS 78 Jan 07, 2023
Language models are open knowledge graphs ( non official implementation )

language-models-are-knowledge-graphs-pytorch Language models are open knowledge graphs ( work in progress ) A non official reimplementation of Languag

theblackcat102 132 Dec 18, 2022
Employs neural networks to classify images into four categories: ship, automobile, dog or frog

Neural Net Image Classifier Employs neural networks to classify images into four categories: ship, automobile, dog or frog Viterbi_1.py uses a classic

Riley Baker 1 Jan 18, 2022
NP DRAW paper released code

NP-DRAW: A Non-Parametric Structured Latent Variable Model for Image Generation This repo contains the official implementation for the NP-DRAW paper.

ZENG Xiaohui 22 Mar 13, 2022
Prototype-based Incremental Few-Shot Semantic Segmentation

Prototype-based Incremental Few-Shot Semantic Segmentation Fabio Cermelli, Massimiliano Mancini, Yongqin Xian, Zeynep Akata, Barbara Caputo -- BMVC 20

Fabio Cermelli 21 Dec 29, 2022
Simple-System-Convert--C--F - Simple System Convert With Python

Simple-System-Convert--C--F REQUIREMENTS Python version : 3 HOW TO USE Run the c

Jonathan Santos 2 Feb 16, 2022