Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd.

Overview

Head Detector

Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd. The head_detection module can be installed using pip in order to be able to plug-and-play with HeadHunter-T.

Requirements

  1. Nvidia Driver >= 418

  2. Cuda 10.0 and compaitible CudNN

  3. Python packages : To install the required python packages; conda env create -f head_detection.yml.

  4. Use the anaconda environment head_detection by activating it, source activate head_detection or conda activate head_detection.

  5. Alternatively pip can be used to install required packages using pip install -r requirements.txt or update your existing environment with the aforementioned yml file.

Training

  1. To train a model, define environment variable NGPU, config file and use the following command

$python -m torch.distributed.launch --nproc_per_node=$NGPU --use_env train.py --cfg_file config/config_chuman.yaml --world_size $NGPU --num_workers 4

  1. Training is currently supported over (a) ScutHead dataset (b) CrowdHuman + ScutHead combined, (c) Our proposed CroHD dataset. This can be mentioned in the config file.

  2. To train the model, config files must be defined. More details about the config files are mentioned in the section below

Evaluation and Testing

  1. Unlike the training, testing and evaluation does not have a config file. Rather, all the parameters are set as argument variable while executing the code. Refer to the respective files, evaluate.py and test.py.
  2. evaluate.py evaluates over the validation/test set using AP, MMR, F1, MODA and MODP metrics.
  3. test.py runs the detector over a "bunch of images" in the testing set for qualitative evaluation.

Config file

A config file is necessary for all training. It's built to ease the number of arg variable passed during each execution. Each sub-sections are as elaborated below.

  1. DATASET

    1. Set the base_path as the parent directory where the dataset is situated at.
    2. Train and Valid are .txt files that contains relative path to respective images from the base_path defined above and their corresponding Ground Truth in (x_min, y_min, x_max, y_max) format. Generation files for the three datasets can be seen inside data directory. For example,
    /path/to/image.png
    x_min_1, y_min_1, x_max_1, y_max_1
    x_min_2, y_min_2, x_max_2, y_max_2
    x_min_3, y_min_3, x_max_3, y_max_3
    .
    .
    .
    
    1. mean_std are RGB means and stdev of the training dataset. If not provided, can be computed prior to the start of the training
  2. TRAINING

    1. Provide pretrained_model and corresponding start_epoch for resuming.
    2. milestones are epoch at which the learning rates are set to 0.1 * lr.
    3. only_backbone option loads just the Resnet backbone and not the head. Not applicable for mobilenet.
  3. NETWORK

    1. The mentioned parameters are as described in experiment section of the paper.
    2. When using median_anchors, the anchors have to be defined in anchors.py.
    3. We experimented with mobilenet, resnet50 and resnet150 as alternative backbones. This experiment was not reported in the paper due to space constraints. We found the accuracy to significantly decrease with mobilenet but resnet50 and resnet150 yielded an almost same performance.
    4. We also briefly experimented with Deformable Convolutions but again didn't see noticable improvements in performance. The code we used are available in this repository.

Note :

This codebase borrows a noteable portion from pytorch-vision owing to the fact some of their modules cannot be "imported" as a package.

Citation :

@InProceedings{Sundararaman_2021_CVPR,
    author    = {Sundararaman, Ramana and De Almeida Braga, Cedric and Marchand, Eric and Pettre, Julien},
    title     = {Tracking Pedestrian Heads in Dense Crowd},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {3865-3875}
}
Owner
Ramana Sundararaman
Ramana Sundararaman
Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Renato Almeida de Oliveira 18 Aug 31, 2022
【steal piano】GitHub偷情分析工具!

【steal piano】GitHub偷情分析工具! 你是否有这样的困扰,有一天你的仓库被很多人加了star,但是你却不知道这些人都是从哪来的? 别担心,GitHub偷情分析工具帮你轻松解决问题! 原理 GitHub偷情分析工具透过分析star的时间以及他们之间的follow关系,可以推测出每个st

黄巍 442 Dec 21, 2022
BEGAN in PyTorch

BEGAN in PyTorch This project is still in progress. If you are looking for the working code, use BEGAN-tensorflow. Requirements Python 2.7 Pillow tqdm

Taehoon Kim 260 Dec 07, 2022
Codes for ACL-IJCNLP 2021 Paper "Zero-shot Fact Verification by Claim Generation"

Zero-shot-Fact-Verification-by-Claim-Generation This repository contains code and models for the paper: Zero-shot Fact Verification by Claim Generatio

Liangming Pan 47 Jan 01, 2023
O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis

O-CNN This repository contains the implementation of our papers related with O-CNN. The code is released under the MIT license. O-CNN: Octree-based Co

Microsoft 607 Dec 28, 2022
i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery

i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery This is a public code repository for the publication: i-SpaSP: Structured Neural Pruning

Cameron Ronald Wolfe 5 Nov 04, 2022
Official code for "Distributed Deep Learning in Open Collaborations" (NeurIPS 2021)

Distributed Deep Learning in Open Collaborations This repository contains the code for the NeurIPS 2021 paper "Distributed Deep Learning in Open Colla

Yandex Research 96 Sep 15, 2022
Code for our paper "Graph Pre-training for AMR Parsing and Generation" in ACL2022

AMRBART An implementation for ACL2022 paper "Graph Pre-training for AMR Parsing and Generation". You may find our paper here (Arxiv). Requirements pyt

xfbai 60 Jan 03, 2023
Randomizes the warps in a stock pokeemerald repo.

pokeemerald warp randomizer Randomizes the warps in a stock pokeemerald repo. Usage Instructions Install networkx and matplotlib via pip3 or similar.

Max Thomas 6 Mar 17, 2022
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
Per-Pixel Classification is Not All You Need for Semantic Segmentation

MaskFormer: Per-Pixel Classification is Not All You Need for Semantic Segmentation Bowen Cheng, Alexander G. Schwing, Alexander Kirillov [arXiv] [Proj

Facebook Research 1k Jan 08, 2023
PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation.

PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation. Warning: the master branch might collapse. To ob

559 Dec 14, 2022
Code-free deep segmentation for computational pathology

NoCodeSeg: Deep segmentation made easy! This is the official repository for the manuscript "Code-free development and deployment of deep segmentation

André Pedersen 26 Nov 23, 2022
[CVPR'22] Official PyTorch Implementation of Collaborative Transformers for Grounded Situation Recognition

[CVPR'22] Collaborative Transformers for Grounded Situation Recognition Paper | Model Checkpoint This is the official PyTorch implementation of Collab

Junhyeong Cho 29 Dec 10, 2022
CONditionals for Ordinal Regression and classification in PyTorch

CONDOR pytorch implementation for ordinal regression with deep neural networks. Documentation: https://GarrettJenkinson.github.io/condor_pytorch About

7 Jul 25, 2022
Omnidirectional camera calibration in python

Omnidirectional Camera Calibration Key features pure python initial solution based on A Toolbox for Easily Calibrating Omnidirectional Cameras (Davide

Thomas Pönitz 12 Nov 22, 2022
Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework

This repo is the official implementation of "Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework". @inproceedings{zhou2021insta

34 Dec 31, 2022
RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition

RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition (PyTorch) Paper: https://arxiv.org/abs/2105.01883 Citation: @

260 Jan 03, 2023
MACE is a deep learning inference framework optimized for mobile heterogeneous computing platforms.

Documentation | FAQ | Release Notes | Roadmap | MACE Model Zoo | Demo | Join Us | 中文 Mobile AI Compute Engine (or MACE for short) is a deep learning i

Xiaomi 4.7k Dec 29, 2022
Diffusion Normalizing Flow (DiffFlow) Neurips2021

Diffusion Normalizing Flow (DiffFlow) Reproduce setup environment The repo heavily depends on jam, a personal toolbox developed by Qsh.zh. The API may

76 Jan 01, 2023