Segmentation vgg16 fcn - cityscapes

Overview

VGGSegmentation

Segmentation vgg16 fcn - cityscapes Priprema skupa

skripta prepare_dataset_downsampled.py

Iz slika cityscapesa izrezuje haubu automobila, i smanjuje sliku na željenu rezoluciju, to zapisuje u tfrecords formatu. Treba zadati putanju do cityscapesa, izlazni direktorij gdje će se spremati tfrecordsi i zadati željenu rezoluciju.

Priprema težina vgg-a

Da bi se model mogao fine-tuneati treba na disku imati spremljene težine mreže (prethodno naučene na nekom drugom skupu). One se mogu skinuti s interneta u raznim formatima.

Ja sam ih imala spremljene u sljedećim datotekama: conv1_1_biases.bin conv1_1_weights.bin conv1_2_biases.bin conv1_2_weights.bin conv2_1_biases.bin conv2_1_weights.bin conv2_2_biases.bin conv2_2_weights.bin conv3_1_biases.bin conv3_1_weights.bin conv3_2_biases.bin conv3_2_weights.bin conv3_3_biases.bin conv3_3_weights.bin conv4_1_biases.bin conv4_1_weights.bin conv4_2_biases.bin conv4_2_weights.bin conv4_3_biases.bin conv4_3_weights.bin conv5_1_biases.bin conv5_1_weights.bin conv5_2_biases.bin conv5_2_weights.bin conv5_3_biases.bin conv5_3_weights.bin fc6_biases.bin fc6_weights.bin fc7_biases.bin fc7_weights.bin fc8_biases.bin fc8_weights.bin

Ako će se težine učitavati iz ckpt. datoteke npr vgg_16.ckpt, onda će i u kodu trebati mjenjati metodu create_init_op unutar model.py

Konfiguracija

config/cityscapes.py - primjer fajla s konfiguracijom za treniranje

Treba promjeniti putanje

model_path da pokazuje do py fajla s definicijom modela (primjer za takve dvije defincije su model.py i model2.py)

dataset_dir - da pokazuje do foldera s prethodno pripremljenim tfrecordsima (koji sadrzi subdirektorije train i val)

treba paziti pri razlicitim rezolucijama da se promjene zastavice img_width i height

ostale zastavice se većinom odnose na treniranje modela to mjenjati prema potrebi.

subsample_factor zastavica bi označavala faktor za koji se rezolucija mape smanji na kraju mreže. Taj faktor će ovisiti o samome modelu koji se trenira, ako model ima tri pooling sloja 2*2 svaki taj sloj će sliku smanjiti za dva puta pa će ukupno smanjnjenje biti za faktor osam

train.py - skripta koja pokreće skriptu treniranja, nakon svake epohe model se evaluira na skupu za validaciju.

Official implementation for TTT++: When Does Self-supervised Test-time Training Fail or Thrive

TTT++ This is an official implementation for TTT++: When Does Self-supervised Test-time Training Fail or Thrive? TL;DR: Online Feature Alignment + Str

VITA lab at EPFL 39 Dec 25, 2022
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2

Chenhongyi Yang 21 Dec 13, 2022
[ICCV 2021] Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neural Networks in Frequency Domain

Amplitude-Phase Recombination (ICCV'21) Official PyTorch implementation of "Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neur

Guangyao Chen 53 Oct 05, 2022
Learning Dynamic Network Using a Reuse Gate Function in Semi-supervised Video Object Segmentation.

Training Script for Reuse-VOS This code implementation of CVPR 2021 paper : Learning Dynamic Network Using a Reuse Gate Function in Semi-supervised Vi

HYOJINPARK 22 Jan 01, 2023
Resources for the "Evaluating the Factual Consistency of Abstractive Text Summarization" paper

Evaluating the Factual Consistency of Abstractive Text Summarization Authors: Wojciech Kryściński, Bryan McCann, Caiming Xiong, and Richard Socher Int

Salesforce 165 Dec 21, 2022
SIR model parameter estimation using a novel algorithm for differentiated uniformization.

TenSIR Parameter estimation on epidemic data under the SIR model using a novel algorithm for differentiated uniformization of Markov transition rate m

The Spang Lab 4 Nov 30, 2022
This is an implementation of PIFuhd based on Pytorch

Open-PIFuhd This is a unofficial implementation of PIFuhd PIFuHD: Multi-Level Pixel-Aligned Implicit Function forHigh-Resolution 3D Human Digitization

Lingteng Qiu 235 Dec 19, 2022
A Pytorch Implementation of [Source data‐free domain adaptation of object detector through domain

A Pytorch Implementation of Source data‐free domain adaptation of object detector through domain‐specific perturbation Please follow Faster R-CNN and

1 Dec 25, 2021
Transformers based fully on MLPs

Awesome MLP-based Transformers papers An up-to-date list of Transformers based fully on MLPs without attention! Why this repo? After transformers and

Fawaz Sammani 35 Dec 30, 2022
Training BERT with Compute/Time (Academic) Budget

Training BERT with Compute/Time (Academic) Budget This repository contains scripts for pre-training and finetuning BERT-like models with limited time

Intel Labs 263 Jan 07, 2023
Deep learning toolbox based on PyTorch for hyperspectral data classification.

Deep learning toolbox based on PyTorch for hyperspectral data classification.

Nicolas 304 Dec 28, 2022
Implementation of the method proposed in the paper "Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation"

Neural Descriptor Fields (NDF) PyTorch implementation for training continuous 3D neural fields to represent dense correspondence across objects, and u

167 Jan 06, 2023
A little Python application to auto tag your photos with the power of machine learning.

Tag Machine A little Python application to auto tag your photos with the power of machine learning. Report a bug or request a feature Table of Content

Florian Torres 14 Dec 21, 2022
This repository contains the code for the binaural-detection model used in the publication arXiv:2111.04637

This repository contains the code for the binaural-detection model used in the publication arXiv:2111.04637 Dependencies The model depends on the foll

Jörg Encke 2 Oct 14, 2022
Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"

StrengthNet Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis" https://arxiv.org/abs/2110

RuiLiu 65 Dec 20, 2022
General Virtual Sketching Framework for Vector Line Art (SIGGRAPH 2021)

General Virtual Sketching Framework for Vector Line Art - SIGGRAPH 2021 Paper | Project Page Outline Dependencies Testing with Trained Weights Trainin

Haoran MO 118 Dec 27, 2022
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
A PyTorch implementation of SlowFast based on ICCV 2019 paper "SlowFast Networks for Video Recognition"

SlowFast A PyTorch implementation of SlowFast based on ICCV 2019 paper SlowFast Networks for Video Recognition. Requirements Anaconda PyTorch conda in

Hao Ren 8 Dec 23, 2022
(under submission) Bayesian Integration of a Generative Prior for Image Restoration

BIGPrior: Towards Decoupling Learned Prior Hallucination and Data Fidelity in Image Restoration Authors: Majed El Helou, and Sabine Süsstrunk {Note: p

Majed El Helou 22 Dec 17, 2022