Time Dependent DFT in Tamm-Dancoff Approximation

Overview

image

Density Function Theory Program - kspy-tddft(tda)

This is an implementation of Time-Dependent Density Functional Theory(TDDFT) using the Tamm-Dancoff Approximation (TDA).

The Grid

I could have used a cube as a space grid and then taken Riemann sums to evaluate (there's a great YouTube series by James Johns where he develops a matlab HF program and shows how to convert it to DFT. In this he uses Riemann sums to evaluate the integrals in the DFT program.) However, I decided to try for a 'proper' atom centered spherical grid approach. A useful paper was PMW Gill, BG Johnson and JA Poples 'A standard grid for density functional theory', although I didn't use this SG-1 grid the paper helped understand the techniques involved. The grid I settled on was a coarse grid of (10,15) radial points for period 1 and period 2 elements respectively. The radial grid is a Mura-Knowles radial grid ME Mura and PJ Knowles 'Improved radial grids for quadrature in density-functional calculations' JCP 104, 9848 (1996); DOI:10.1063/1.471749. The 'coarse' angular grid is of Lebedev orders (11, 15) for period 1 and period 2 respectively. This translates into 50 and 86 points respectively arranged on a spherical shell (VI Lebedev, and DN Laikov, Doklady Mathematics, 'A Quadrature formula for the sphere of the 131st algebraic order of accuracy' Vol. 59, No. 3, (1999)). There are various sources for this data given in the external links of the wikipedia article on Lebedev integration. A pruning scheme is employed to systematically reduce the number of angular points in regions where dense angular quadrature is not necessary, such as near the nuclei where the charge density is approximately spherically symmetric and at long distance from the nucleus. The pruning scheme I employed was the Treutler-Aldrich scheme O Treutler and R Ahlrich, 'Efficient molecular numerical integration schemes' JCP 102, 346 (1995); DOI:10.1063/1.469408. The partitioning of the atomic centered grids to a molecular grid follows a Becke scheme after Stratmann RE Stratmann, GE Scuseria and MJ Frisch, 'Achieving Linear scaling in exchange-correlation density functional quadratures' CPL 257, 3-4 (1996); DOI:10.1016/009-2614(96)00600-8. Finally I have implemented a final radius adjustment during the partition (Becke suggests doing this) using the Bragg radius. A second 'close' grid is also included which is a (50, 75) radial and (29, 29) angular, the latter representing 302 points on each shell. The grid routines are in ks_grid.py.

The HF Integrals

To get the DFT SCF started we need an initial density. To do this I use a HF overlap matrix S, and an initial Fock matrix composed of the sum of the 1-electron kinetic and coulomb integrals (core Hamiltonian - T+V). This Fock is then orthogonalised (F') as (S-0.5)TFS-0.5, eigensolve the resulting orthogonal Fock for orbital coefficients C orthogonal, transform back to atomic basis as S-0.5C', use resulting ao coefficients to compute a density matrix Dμν = cμic where i is over occupied orbitals. This initial density can be used with initial Fock and 2-electron repulsion integrals to form the coulomb integral J (we don't want the HF exchange integral K for DFT). To get these integrals I've used a modified version of Harpy's Cython integral package aello. This version is slightly different from the version in kspy_lda in that the dipole routine returns the component matrices rather than the actual dipole, additionally the angular and nabla routines have been added. These are in ks_aello.pyx.

Molecule and Basis Sets

The molecule definition is contained in a mol object which is itself comprised of objects from an atom class. Each instance of the atom class contains the atom symbol, atomic number and the coordinates of the atom center (array[3]). The molecule is hard coded as H2O. The basis is contained in an orb object which is itself comprised of objects from a gaussian class. Each instance of the gaussian class contains the atom the Gaussian is centered on, the momentum(array[3]), the exponents (array[primatives], the coefficients (array[primatives]), the normalisation (array[primatives]) and a copy of the atom center coordinates (array[3]). The momenta are given as s [0,0,0] px [1,0,0] py [0,1,0] and pz [0,0,1]. The basis used is a simple STO-3G so we only require s and p orbitals. The primatives exponent and coefficient values are hard-coded in the main section. (I use the psi4 format of the basis sets from BSE which have some (small) differences from the nwchem format versions as used by eg pyscf. This might lead to numerical differences in values when using high precision).

The Functionals

The choice of functionals here was determined solely because htey have easily determined analytic derivatives. The second derivatives of the exchange-correlation energy are needed in TDDFT to determine the orbital Hessian for the coupling matrix. The exchange functional is Slater LDA and the correlation functional is RPA. For TDDFT we are working in a molecular spin basis so will use spin polarized versions of the functional (with α = β). The derivatives used are given below

image

TDDFT

Details of TDDFT can be found in Time-dependent density-functional theory for molecules and molecular solids, ME Casida, Journal of Molecular Structure: THEOCHEM 914 (2009) 3–18 and Single-Reference ab Initio Methods for the Calculation of Excited States of Large Molecules, A Dreuw and M Head-Gordon, Chem. Rev.2005,105,4009−4037. The basic equations for the excitation (de-excitation) energies are image

The calculation of singlet and triplet states is analogous to the spin-adapted CIS calculation in HF theory see. The class TDA is provided to compute the excitation energies and coefficients for either singlet or triplet states. The class provides a response property which is a tuple (energy, coefficients).

Response Properties

An example of calculating transition properties in TDDFT is given in this psicon 2020 document. We calculate the electric transition dipoles in both length (μ) and velocity (∇) gauges together with the associated oscillator strengths. Additionally the magnetic transition dipoles are calculated in the length (L) gauge and the rotary strengths in both gauges. All the previous properties are returned by the transition_properties method of the TDA_properties class.
A basic transition natural orbital treatment is available from the transition_NO method of the TDA_properties class. Martin, R. L., Journal of Chemical Physics, 118, 4775-4777.
A spectrum method of the TDA_properties class is provided to plot the spectrum of oscillator strengths in both gauges. This is all provided in the module ks_tda. See results.md for more details.

Owner
Peter Borthwick
Retired. M.Sc Mathematics (Kings', London), Ph.D in theoretical chemistry.
Peter Borthwick
Repository for publicly available deep learning models developed in Rosetta community

trRosetta2 This package contains deep learning models and related scripts used by Baker group in CASP14. Installation Linux/Mac clone the package git

81 Dec 29, 2022
Open-source implementation of Google Vizier for hyper parameters tuning

Advisor Introduction Advisor is the hyper parameters tuning system for black box optimization. It is the open-source implementation of Google Vizier w

tobe 1.5k Jan 04, 2023
buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

buildseg buildseg is a building extraction plugin of QGIS based on PaddlePaddle. TODO Extract building on 512x512 remote sensing images. Extract build

Yizhou Chen 11 Sep 26, 2022
Implementation of CVAE. Trained CVAE on faces from UTKFace Dataset to produce synthetic faces with a given degree of happiness/smileyness.

Conditional Smiles! (SmileCVAE) About Implementation of AE, VAE and CVAE. Trained CVAE on faces from UTKFace Dataset. Using an encoding of the Smile-s

Raúl Ortega 3 Jan 09, 2022
Background-Click Supervision for Temporal Action Localization

Background-Click Supervision for Temporal Action Localization This repository is the official implementation of BackTAL. In this work, we study the te

LeYang 221 Oct 09, 2022
This is the repo for Uncertainty Quantification 360 Toolkit.

UQ360 The Uncertainty Quantification 360 (UQ360) toolkit is an open-source Python package that provides a diverse set of algorithms to quantify uncert

International Business Machines 207 Dec 30, 2022
MAU: A Motion-Aware Unit for Video Prediction and Beyond, NeurIPS2021

MAU (NeurIPS2021) Zheng Chang, Xinfeng Zhang, Shanshe Wang, Siwei Ma, Yan Ye, Xinguang Xiang, Wen GAo. Official PyTorch Code for "MAU: A Motion-Aware

ZhengChang 20 Nov 25, 2022
Deep Learning for 3D Point Clouds: A Survey (IEEE TPAMI, 2020)

🔥Deep Learning for 3D Point Clouds (IEEE TPAMI, 2020)

Qingyong 1.4k Jan 08, 2023
Official Implementation and Dataset of "PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask and Group-Level Consistency", CVPR 2021

Portrait Photo Retouching with PPR10K Paper | Supplementary Material PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask an

184 Dec 11, 2022
This project aims to segment 4 common retinal lesions from Fundus Images.

This project aims to segment 4 common retinal lesions from Fundus Images.

Husam Nujaim 1 Oct 10, 2021
Data, notebooks, and articles associated with the RSNA AI Deep Learning Lab at RSNA 2021

RSNA AI Deep Learning Lab 2021 Intro Welcome Deep Learners! This document provides all the information you need to participate in the RSNA AI Deep Lea

RSNA 65 Dec 16, 2022
Official implementation for paper Render In-between: Motion Guided Video Synthesis for Action Interpolation

Render In-between: Motion Guided Video Synthesis for Action Interpolation [Paper] [Supp] [arXiv] [4min Video] This is the official Pytorch implementat

8 Oct 27, 2022
On the model-based stochastic value gradient for continuous reinforcement learning

On the model-based stochastic value gradient for continuous reinforcement learning This repository is by Brandon Amos, Samuel Stanton, Denis Yarats, a

Facebook Research 46 Dec 15, 2022
CARLA: A Python Library to Benchmark Algorithmic Recourse and Counterfactual Explanation Algorithms

CARLA - Counterfactual And Recourse Library CARLA is a python library to benchmark counterfactual explanation and recourse models. It comes out-of-the

Carla Recourse 200 Dec 28, 2022
YOLOv7 - Framework Beyond Detection

🔥🔥🔥🔥 YOLO with Transformers and Instance Segmentation, with TensorRT acceleration! 🔥🔥🔥

JinTian 3k Jan 01, 2023
Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it

Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it. Study notes and a curated list of awesome resources of such topics.

mani 1.2k Jan 07, 2023
Normalization Matters in Weakly Supervised Object Localization (ICCV 2021)

Normalization Matters in Weakly Supervised Object Localization (ICCV 2021) 99% of the code in this repository originates from this link. ICCV 2021 pap

Jeesoo Kim 10 Feb 01, 2022
GEP (GDB Enhanced Prompt) - a GDB plug-in for GDB command prompt with fzf history search, fish-like autosuggestions, auto-completion with floating window, partial string matching in history, and more!

GEP (GDB Enhanced Prompt) GEP (GDB Enhanced Prompt) is a GDB plug-in which make your GDB command prompt more convenient and flexibility. Why I need th

Alan Li 23 Dec 21, 2022
Release of SPLASH: Dataset for semantic parse correction with natural language feedback in the context of text-to-SQL parsing

SPLASH: Semantic Parsing with Language Assistance from Humans SPLASH is dataset for the task of semantic parse correction with natural language feedba

Microsoft Research - Language and Information Technologies (MSR LIT) 35 Oct 31, 2022
Tensorflow AffordanceNet and AffContext implementations

AffordanceNet and AffContext This is tensorflow AffordanceNet and AffContext implementations. Both are implemented and tested with tensorflow 2.3. The

Beatriz Pérez 6 Dec 01, 2022