LWCC: A LightWeight Crowd Counting library for Python that includes several pretrained state-of-the-art models.

Overview

LWCC: A LightWeight Crowd Counting library for Python

LWCC is a lightweight crowd counting framework for Python. It wraps four state-of-the-art models all based on convolutional neural networks: CSRNet, Bayesian crowd counting, DM-Count, and SFANet. The library is based on PyTorch.

Installation

The easiest way to install library LWCC and its prerequisites is to use the package manager pip.

pip install lwcc

Usage

You can import the library and use its functionalities by:

from lwcc import LWCC

Count estimation

Most straightforward way to use the library:

img = "path/to/image"
count = LWCC.get_count(img)

This uses CSRNet pretrained on SHA (default). You can choose a different model pretrained on different data set using:

count = LWCC.get_count(img, model_name = "DM-Count", model_weights = "SHB")

The result is a float with predicted count.

Large images

Note: By default all images are resized such that the longest side is less than 1000px, preserving the aspect ratio. Otherwise models might perform worse for large images with sparse crowds (counting patterns on shirts, dresses). If you are estimating dense crowds, we recommend you to set the resize_img to False. The call should look like this:

count = LWCC.get_count(img, model_name = "DM-Count", model_weights = "SHB", resize_img = True)

Multiple images

Library allows prediction of count for multiple images with a single call of get_count. You can simply pass a list of image paths:

img1 = "path/to/image1"
img2 = "path/to/image2"
count = LWCC.get_count([img1, img2])

Result is then a dictionary of pairs image_name : image_count: result

Density map

You can also request a density map by setting flag return_density = True. The result is then a tuple (count, density_map), where density_map is a 2d array with predicted densities. The array is smaller than the input image and its size depends on the model.

import matplotlib.pyplot as plt

count, density = LWCC.get_count(img, return_density = True)

plt.imshow(density)
plt.show()

result_density

This also works for multiple images (list of image paths as input). Result is then a tuple of two dictionaries, where the first dictionary is the same as above (pairs of image_name : image_count) and the second dictionary contains pairs of image_name : density_map.

Loading the model

You can also directly access the PyTorch models by loading them first with the load_model method.

model = LWCC.load_model(model_name = "DM-Count", model_weights = "SHA")

The loaded model is a PyTorch model and you can access its weights as with any other PyTorch model.

You can use it for inference as:

 count = LWCC.get_count(img, model = model)

Models

LWCC currently offers 4 models (CSRNet, Bayesian crowd counting, DM-Count, SFANet) pretrained on Shanghai A, Shanghai B, and UCF-QNRF datasets. The following table shows the model name and MAE / MSE result of the available pretrained models on the test sets.

Model name SHA SHB QNRF
CSRNet 75.44 / 113.55 11.27 / 19.32 Not available
Bay 66.92 / 112.07 8.27 / 13.56 90.43 / 161.41
DM-Count 61.39 / 98.56 7.68 / 12.66 88.97 / 154.11
SFANet Not available 7.05 / 12.18 Not available

Valid options for model_name are written in the first column and thus include: CSRNet, Bay, DM-Count, and SFANet. Valid options for model_weights are written in the first row and thus include: SHA, SHB, and QNRF.

Note: Not all model_weights are supported with all model_names. See the above table for possible combinations.

How does it work?

The goal of crowd counting methods is to determine the number of people present in a particular area. There exist many approaches (detection, regression, density-based approaches), however, since 2015 many convolutional neural network (CNN) based approaches have been proposed. The basic idea behind CNN based approaches is that they normally try to predict the density map from the input image and infer the count from it. These models differ in the use of different backbones, loss functions, additional maps, etc. If you are interested in a particular algorithm, you are welcome to read the paper belonging to the specific model.

FAQ - Frequently asked questions

Can I see some more examples of LWCC in action?

Yes, you can find some examples in Examples.ipynb!

How accurate are the models?

You can see the mean absolute error (MAE) and mean squared error (MSE) of the pretrained models on test sets in section models. We recommend models pretrained on SHA or QNRF for dense crowds, and SHB for sparse crowds.

Is GPU support available?

No, GPU support is currently not supported yet, but is planned for the future version.

Can I load custom weights?

Full support of loading custom pretrained weights is not supported, but is planned in the future version.

Can I train the models myself?

The library does not support training, only inference.

Why are my results bad?

This might depend on the model you use, image size, density or type of the crowd, or the weights that you use. For example, models might often make mistakes for images with a group portrait, as they are trained on images containing crowds on streets, concerts, etc. Using SHAweights on relatively sparse crowds might also give very wrong results. On the other hand, SHB might perform better as the weights were trained on Shanghai B data set, which containts images with relatively sparse crowds. Using high quality images with sparse crowds might also yield bad results, as the algorithms might mistake some textures of clothings for a crowd.

As a rule of thumb, you should use SHB if you are planning on estimating the number of people in images with sparse crowds, and SHA or QNRF for images with dense crowds. Keep in mind that current algorithms predict the density, and there still might be some mistakes. You are welcome to try out different combinations of models and weights and see which one works the best for your problem.

Support

If you like the library please show us your support by ⭐️ starring the project!

If you wish to include your own crowd counting model, please contact us ([email protected] or [email protected]).

Stargazers

Stargazers repo roster for @tersekmatija/lwcc

Citation

This library is a result of a research of CNN Crowd Counting models by Matija Teršek and Maša Kljun. Although the paper has not been published yet, please provide the link to this GitHub repository if you use LWCC in your research.

License

This library is licensed under MIT license (see LICENSE). Licenses of the models wrapped in the library will be inherited, depending on the model you use ( CSRNet, Bayesian crowd counting, DM-Count, and SFANet).

Owner
Matija Teršek
Data Science Master's student
Matija Teršek
A simple python stock Predictor

Python Stock Predictor A simple python stock Predictor Demo Run Locally Clone the project git clone https://github.com/yashraj-n/stock-price-predict

Yashraj narke 5 Nov 29, 2021
PyTorch implementation of MuseMorphose, a Transformer-based model for music style transfer.

MuseMorphose This repository contains the official implementation of the following paper: Shih-Lun Wu, Yi-Hsuan Yang MuseMorphose: Full-Song and Fine-

Yating Music, Taiwan AI Labs 142 Jan 08, 2023
BabelCalib: A Universal Approach to Calibrating Central Cameras. In ICCV (2021)

BabelCalib: A Universal Approach to Calibrating Central Cameras This repository contains the MATLAB implementation of the BabelCalib calibration frame

Yaroslava Lochman 55 Dec 30, 2022
Distributed Asynchronous Hyperparameter Optimization better than HyperOpt.

UltraOpt : Distributed Asynchronous Hyperparameter Optimization better than HyperOpt. UltraOpt is a simple and efficient library to minimize expensive

98 Aug 16, 2022
PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos

PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos. By adopting a unified pipeline-ba

PyKale 370 Dec 27, 2022
Local Attention - Flax module for Jax

Local Attention - Flax Autoregressive Local Attention - Flax module for Jax Install $ pip install local-attention-flax Usage from jax import random fr

Phil Wang 16 Jun 16, 2022
Inteligência artificial criada para realizar interação social com idosos.

IA SONIA 4.0 A SONIA foi inspirada no assistente mais famoso do mundo e muito bem conhecido JARVIS. Todo mundo algum dia ja sonhou em ter o seu própri

Vinícius Azevedo 2 Oct 21, 2021
MAT: Mask-Aware Transformer for Large Hole Image Inpainting

MAT: Mask-Aware Transformer for Large Hole Image Inpainting (CVPR2022, Oral) Wenbo Li, Zhe Lin, Kun Zhou, Lu Qi, Yi Wang, Jiaya Jia [Paper] News This

254 Dec 29, 2022
A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items

A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items This repository co

Taimur Hassan 3 Mar 16, 2022
Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash through feeding it pictures or videos.

Trash-Sorter-Extraordinaire Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash

Rameen Mahmood 1 Nov 07, 2021
Stochastic Extragradient: General Analysis and Improved Rates

Stochastic Extragradient: General Analysis and Improved Rates This repository is the official implementation of the paper "Stochastic Extragradient: G

Hugo Berard 4 Nov 11, 2022
Official implementation for the paper: Permutation Invariant Graph Generation via Score-Based Generative Modeling

Permutation Invariant Graph Generation via Score-Based Generative Modeling This repo contains the official implementation for the paper Permutation In

64 Dec 29, 2022
Source code and data in paper "MDFEND: Multi-domain Fake News Detection (CIKM'21)"

MDFEND: Multi-domain Fake News Detection This is an official implementation for MDFEND: Multi-domain Fake News Detection which has been accepted by CI

Rich 40 Dec 18, 2022
PyTorch implementation of our ICCV 2019 paper: Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer and Novel View Synthesis

Impersonator PyTorch implementation of our ICCV 2019 paper: Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer an

SVIP Lab 1.7k Jan 06, 2023
Convert game ISO and archives to CD CHD for emulation on Linux.

tochd Convert game ISO and archives to CD CHD for emulation. Author: Tuncay D. Source: https://github.com/thingsiplay/tochd Releases: https://github.c

Tuncay 20 Jan 02, 2023
EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

Princeton Natural Language Processing 68 Jul 18, 2022
Person Re-identification

Person Re-identification Final project of Computer Vision Table of content Person Re-identification Table of content Students: Proposed method Dataset

Nguyễn Hoàng Quân 4 Jun 17, 2021
Self-supervised Product Quantization for Deep Unsupervised Image Retrieval - ICCV2021

Self-supervised Product Quantization for Deep Unsupervised Image Retrieval Pytorch implementation of SPQ Accepted to ICCV 2021 - paper Young Kyun Jang

Young Kyun Jang 71 Dec 27, 2022
Replication package for the manuscript "Using Personality Detection Tools for Software Engineering Research: How Far Can We Go?" submitted to TOSEM

tosem2021-personality-rep-package Replication package for the manuscript "Using Personality Detection Tools for Software Engineering Research: How Far

Collaborative Development Group 1 Dec 13, 2021
Official PyTorch implementation of CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds

CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds Introduction This is the official PyTorch implementation of o

Yijia Weng 96 Dec 07, 2022