Adversarial Framework for (non-) Parametric Image Stylisation Mosaics

Overview

Fully Adversarial Mosaics (FAMOS)

Pytorch implementation of the paper "Copy the Old or Paint Anew? An Adversarial Framework for (non-) Parametric Image Stylization" available at http://arxiv.org/abs/1811.09236.

This code allows to generate image stylisation using an adversarial approach combining parametric and non-parametric elements. Tested to work on Ubuntu 16.04, Pytorch 0.4, Python 3.6. Nvidia GPU p100. It is recommended to have a GPU with 12, 16GB, or more of VRAM.

Parameters

Our method has many possible settings. You can specify them with command-line parameters. The options parser that defines these parameters is in the config.py file and the options are parsed there. You are free to explore them and discover the functionality of FAMOS, which can cover a very broad range of image stylization settings.

There are 5 groups of parameter types:

  • data path and loading parameters
  • neural network parameters
  • regularization and loss criteria weighting parameters
  • optimization parameters
  • parameters of the stochastic noise -- see PSGAN

Update Febr. 2019: video frame-by-frame rendering supported

mosaicGAN.py can now render a whole folder of test images with the trained model. Example videos: lion video with Münich and Berlin

Just specify

python mosaicGAN.py --texturePath=samples/milano/ --contentPath=myFolder/ --testImage=myFolder/ 

with your myFolder and all images from that folder will be rendered by the generator of the GAN. Best to use the same test folder as content folder for training. To use in a video editing pipeline, save all video frames as images with a tool like AVIDEMUX, train FAMOS and save rendered frames, assemble again as video. Note: this my take some time to render thousands of images, you can edit in the code VIDEO_SAVE_FREQ to render the test image folder less frequently.

Update Jan. 2019: new functionality for texture synthesis

Due to interest in a new Pytorch implementation of our last paper "Texture Synthesis with Spatial Generative Adversarial Networks" (PSGAN) we added a script reimplementing it in the current repository. It shares many components with the texture mosaic stylization approach. A difference: PSGAN has no content image and loss, the generator is conditioned only on noise. Example call for texture synthesis:

python PSGAN.py --texturePath=samples/milano/ --ngf=120 --zLoc=50 --ndf=120 --nDep=5 --nDepD=5 --batchSize=16

In general, texture synthesis is much faster than the other methods in this repository, so feel free to add more channels and increase th batchsize. For more details and inspiration how to play with texture synthesis see our old repository with Lasagne code for PSGAN.

Usage: parametric convolutional adversarial mosaic

We provide scripts that have a main loop in which we (i) train an adversarial stylization model and (ii) save images (inference mode). If you need it, you can easily modify the code to save a trained model and load it later to do inference on many other images, see comments at the end of mosaicGAN.py.

In the simplest case, let us start an adversarial mosaic using convolutional networks. All you need is to specify the texture and content folders:

python mosaicGAN.py --texturePath=samples/milano/ --contentPath=samples/archimboldo/

This repository includes sample style files (4 satellite views of Milano, from Google Maps) and a portrait of Archimboldo (from the Google Art Project). Our GAN method will start running and training, occasionally saving results in "results/milano/archimboldo/" and printing the loss values to the terminal. Note that we use the first image found in contentPath as the default full-size output image stylization from FAMOS. You can also specify another image file name testImage to do out-of-sample stylization (inference).

This version uses DCGAN by default, which works nicely for the convolutional GAN we have here. Add the parameter LS for a least squares loss, which also works nicely. Interestingly, WGAN-GP is poorer for our model, which we did not investigate in detail.

If you want to tune the optimisation and model, you can adjust the layers and channels of the Generator and Discriminator, and also choose imageSize and batchSize. All this will effect the speed and performance of the model. You can also tweak the correspondance map cLoss and the content loss weighting fContent

python mosaicGAN.py --texturePath=samples/milano/ --contentPath=samples/archimboldo/ --imageSize=192 --batchSize=8 --ngf=80 --ndf=80  --nDepD=5  --nDep=4 --cLoss=101 --fContent=.6

Other interesting options are skipConnections and Ubottleneck. By disabling the skip connections of the Unet and defining a smaller bottleneck we can reduce the effect of the content image and emphasize more the texture style of the output.

Usage: the full FAMOS approach with parametric and non-parametric aspects

Our method has the property of being able to copy pixels from template images together with the convolutional generation of the previous section.

python mosaicFAMOS.py  --texturePath=samples/milano/ --contentPath=samples/archimboldo/ --N=80 --mirror=True --dIter=2 --WGAN=True

Here we specify N=80 memory templates to copy from. In addition, we use mirror augmentation to get nice kaleidoscope-like effects in the template (and texture distribution). We use the WGAN GAN criterium, which works better for the combined parametric/non-parametric case (experimenting with the usage of DCGAN and WGAN depending on the architecture is advised). We set to use dIter=2 D steps for each G step.

The code also supports a slightly more complicated implementation than the one described in the paper. By setting multiScale=True a mixed template of images I_M on multiple levels of the Unet is used. In addition, by setting nBlocks=2 we will add residual layers to the decoder of the Unet, for a model with even higher capacity. Finally, you can also set refine=True and add a second Unet to refine the results of the first one. Of course, all these additional layers come at a computational cost -- selecting the layer depth, channel width, and the use of all these additional modules is a matter of trade-off and experimenting.

python mosaicFAMOS.py  --texturePath=samples/milano/ --contentPath=samples/archimboldo/ --N=80 --mirror=True --multiScale=True --nBlocks=1 --dIter=2 --WGAN=True

The method will save mosaics occasionally, and optionally you can specify a testImage (size smaller than the initial content image) to check out-of-sample performance. You can check the patches image saved regularly how the patch based training proceeds. The files has a column per batch-instance, and 6 rows showing the quantities from the paper:

  • I_C content patch
  • I_M mixed template patch on highest scale
  • I_G parametric generation component
  • I blended patch
  • \alpha blending mask
  • A mixing matrix

License

Please make sure to cite/acknowledge our paper, if you use any of the contained code in your own projects or publication.

The MIT License (MIT)

Copyright © 2018 Zalando SE, https://tech.zalando.com

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Owner
Zalando Research
Repositories of the research branch of Zalando SE
Zalando Research
Autotype on websites that have copy-paste disabled like Moodle, HackerEarth contest etc.

Autotype A quick and small python script that helps you autotype on websites that have copy paste disabled like Moodle, HackerEarth contests etc as it

Tushar 32 Nov 03, 2022
Build tensorflow keras model pipelines in a single line of code. Created by Ram Seshadri. Collaborators welcome. Permission granted upon request.

deep_autoviml Build keras pipelines and models in a single line of code! Table of Contents Motivation How it works Technology Install Usage API Image

AutoViz and Auto_ViML 102 Dec 17, 2022
🦕 NanoSaur is a little tracked robot ROS2 enabled, made for an NVIDIA Jetson Nano

🦕 nanosaur NanoSaur is a little tracked robot ROS2 enabled, made for an NVIDIA Jetson Nano Website: nanosaur.ai Do you need an help? Discord For tech

NanoSaur 162 Dec 09, 2022
Lecture materials for Cornell CS5785 Applied Machine Learning (Fall 2021)

Applied Machine Learning (Cornell CS5785, Fall 2021) This repo contains executable course notes and slides for the Applied ML course at Cornell and Co

Volodymyr Kuleshov 103 Dec 31, 2022
Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking."

Expert-Linking Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking." This is

BoChen 12 Jan 01, 2023
Compositional Sketch Search

Compositional Sketch Search Official repository for ICIP 2021 Paper: Compositional Sketch Search Requirements Install and activate conda environment c

Alexander Black 8 Sep 06, 2021
Content shared at DS-OX Meetup

Streamlit-Projects Streamlit projects available in this repo: An introduction to Streamlit presented at DS-OX (Feb 26, 2020) meetup Streamlit 101 - Ja

Arvindra 69 Dec 23, 2022
Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark

Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark Yong

19 Dec 17, 2022
Pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021).

Pytorch code for SS-Net This is a pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021). Environment Code is tested

Sun Ran 1 May 18, 2022
ncnn is a high-performance neural network inference framework optimized for the mobile platform

ncnn ncnn is a high-performance neural network inference computing framework optimized for mobile platforms. ncnn is deeply considerate about deployme

Tencent 16.2k Jan 05, 2023
FairFuzz: AFL extension targeting rare branches

FairFuzz An AFL extension to increase code coverage by targeting rare branches. FairFuzz has a particular advantage on programs with highly nested str

Caroline Lemieux 222 Nov 16, 2022
Causal Influence Detection for Improving Efficiency in Reinforcement Learning

Causal Influence Detection for Improving Efficiency in Reinforcement Learning This repository contains the code release for the paper "Causal Influenc

Autonomous Learning Group 21 Nov 29, 2022
GeoTransformer - Geometric Transformer for Fast and Robust Point Cloud Registration

Geometric Transformer for Fast and Robust Point Cloud Registration PyTorch imple

Zheng Qin 220 Jan 05, 2023
Baseline for the Spoofing-aware Speaker Verification Challenge 2022

Introduction This repository contains several materials that supplements the Spoofing-Aware Speaker Verification (SASV) Challenge 2022 including: calc

40 Dec 28, 2022
Network Pruning That Matters: A Case Study on Retraining Variants (ICLR 2021)

Network Pruning That Matters: A Case Study on Retraining Variants (ICLR 2021)

Duong H. Le 18 Jun 13, 2022
ShuttleNet: Position-aware Fusion of Rally Progress and Player Styles for Stroke Forecasting in Badminton (AAAI'22)

ShuttleNet: Position-aware Rally Progress and Player Styles Fusion for Stroke Forecasting in Badminton (AAAI 2022) Official code of the paper ShuttleN

Wei-Yao Wang 11 Nov 30, 2022
ThunderGBM: Fast GBDTs and Random Forests on GPUs

Documentations | Installation | Parameters | Python (scikit-learn) interface What's new? ThunderGBM won 2019 Best Paper Award from IEEE Transactions o

Xtra Computing Group 647 Jan 04, 2023
Official pytorch implementation of the AAAI 2021 paper Semantic Grouping Network for Video Captioning

Semantic Grouping Network for Video Captioning Hobin Ryu, Sunghun Kang, Haeyong Kang, and Chang D. Yoo. AAAI 2021. [arxiv] Environment Ubuntu 16.04 CU

Hobin Ryu 43 Nov 25, 2022
Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback

CoSMo.pytorch Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback, Seungmin Lee*, Dongwan Kim*, Bohyung

Seung Min Lee 54 Dec 08, 2022
It's final year project of Diploma Engineering. This project is based on Computer Vision.

Face-Recognition-Based-Attendance-System It's final year project of Diploma Engineering. This project is based on Computer Vision. Brief idea about ou

Neel 10 Nov 02, 2022