Simple, realtime visualization of neural network training performance.

Overview

Build Status

pastalog

Simple, realtime visualization server for training neural networks. Use with Lasagne, Keras, Tensorflow, Torch, Theano, and basically everything else.

alt text

Installation

Easiest method for python

The python package pastalog has a node.js server packaged inside python module, as well as helper functions for logging data.

You need node.js 5+:

brew install node

(If you don't have homebrew, download an installer from https://nodejs.org/en/)

pip install pastalog
pastalog --install
pastalog --serve 8120
# - Open up http://localhost:8120/ to see the server in action.

Just node.js server (useful if you don't want the python API)

git clone https://github.com/rewonc/pastalog && cd pastalog
npm install
npm run build
npm start -- --port 8120
# - Open up http://localhost:8120/ to see the server in action.

Logging data

Once you have a server running, you can start logging your progress.

Using Python module

from pastalog import Log

log_a = Log('http://localhost:8120', 'modelA')

# start training

log_a.post('trainLoss', value=2.7, step=1)
log_a.post('trainLoss', value=2.15, step=2)
log_a.post('trainLoss', value=1.32, step=3)
log_a.post('validLoss', value=1.56, step=3)
log_a.post('validAccuracy', value=0.15, step=3)

log_a.post('trainLoss', value=1.31, step=4)
log_a.post('trainLoss', value=1.28, step=5)
log_a.post('trainLoss', value=1.11, step=6)
log_a.post('validLoss', value=1.20, step=6)
log_a.post('validAccuracy', value=0.18, step=6)

Voila! You should see something like the below:

alt text

Now, train some more models:

log_b = Log('http://localhost:8120', 'modelB')
log_c = Log('http://localhost:8120', 'modelC')

# ...

log_b.post('trainLoss', value=2.7, step=1)
log_b.post('trainLoss', value=2.0, step=2)
log_b.post('trainLoss', value=1.4, step=3)
log_b.post('validLoss', value=2.6, step=3)
log_b.post('validAccuracy', value=0.14, step=3)

log_c.post('trainLoss', value=2.7, step=1)
log_c.post('trainLoss', value=2.0, step=2)
log_c.post('trainLoss', value=1.4, step=3)
log_c.post('validLoss', value=2.6, step=3)
log_c.post('validAccuracy', value=0.18, step=3)

Go to localhost:8120 and view your logs updating in real time.

Using the Torch wrapper (Lua)

Use the Torch interface, available here: https://github.com/Kaixhin/torch-pastalog. Thanks to Kaixhin for putting it together.

Using a POST request

See more details in the POST endpoint section

curl -H "Content-Type: application/json" -X POST -d '{"modelName":"model1","pointType":"validLoss", "pointValue": 2.5, "globalStep": 1}' http://localhost:8120/data

Python API

pastalog.Log(server_path, model_name)
  • server_path: The host/port (e.g. http://localhost:8120)
  • model_name: The name of the model as you want it displayed (e.g. resnet_48_A_V5).

This returns a Log object with one method:

Log.post(series_name, value, step)
  • series_name: typically the type of metric (e.g. validLoss, trainLoss, validAccuracy).
  • value: the value of the metric (e.g. 1.56, 0.20, etc.)
  • step: whatever quantity you want to plot on the x axis. If you run for 10 epochs of 100 batches each, you could pass to step the number of batches have been seen already (0..1000).

Note: If you want to compare models across batch sizes, a good approach is to pass to step the fractional number of times the model has seen the data (number of epochs). In that case, you will have a fairer comparison between a model with batchsize 50 and another with batchsize 100, for example.

POST endpoint

If you want to use pastalog but don't want to use the Python interface or the Torch interface, you can just send POST requests to the Pastalog server and everything will work the same. The data should be json and encoded like so:

{"modelName":"model1","pointType":"validLoss", "pointValue": 2.5, "globalStep": 1}

modelName, pointType, pointValue, globalStep correspond with model_name, series_name, value, step above.

An example with curl:

curl -H "Content-Type: application/json" -X POST -d '{"modelName":"model1","pointType":"validLoss", "pointValue": 2.5, "globalStep": 1}' http://localhost:8120/data

Usage notes

Automatic candlesticking

alt text

Once you start viewing a lot of points (typically several thousand), the app will automatically convert them into candlesticks for improved visibility and rendering performance. Each candlestick takes a "batch" of points on the x axis and shows aggregate statistics for the y points of that batch:

  • Top of line: max
  • Top of box: third quartile
  • Solid square in middle: median
  • Bottom of box: first quartile
  • Bottom of line: min

This tends to be much more useful to visualize than a solid mass of dots. Computationally, it makes the app a lot faster than one which renders each point.

Panning and zooming

Drag your mouse to pan. Either scroll up or down to zoom in or out.

Note: you can also pinch in/out on your trackpad to zoom.

Toggling visibility of lines

Simply click the name of any model under 'series.' To toggle everything from a certain model (e.g. modelA, or to toggle an entire type of points (e.g. validLoss), simply click those names in the legend to the right.

Deleting logs

Click the x next to the name of the series. If you confirm deletion, this will remove it on the server and remove it from your view.

Note: if you delete a series, then add more points under the same, it will act as if it is a new series.

Backups

You should backup your logs on your own and should not trust this library to store important data. Pastalog does keep track of what it sees, though, inside a file called database.json and a directory called database/, inside the root directory of the package, in case you need to access it.

Contributing

Any contributors are welcome.

# to install
git clone https://github.com/rewonc/pastalog
cd pastalog
npm install

# build + watch
npm run build:watch

# dev server + watch
npm run dev

# tests
npm test

# To prep the python module
npm run build
./package_python.sh

Misc

License

MIT License (MIT)

Copyright (c) 2016 Rewon Child

Thanks

This is named pastalog because I like to use lasagne. Props to those guys for a great library!

Owner
Rewon Child
Rewon Child
Displaying plot of death rates from past years in Poland. Data source from these years is in readme

Average-Death-Rate Displaying plot of death rates from past years in Poland The goal collect the data from a CSV file count the ADR (Average Death Rat

Oliwier Szymański 0 Sep 12, 2021
A small tool to test and visualize protein embeddings and amino acid proportions.

polyprotein_stats A small tool to test and visualize protein embeddings and amino acid proportions. Currently deployed on streamlit.io. Given a set of

2 Jan 07, 2023
Flexitext is a Python library that makes it easier to draw text with multiple styles in Matplotlib

Flexitext is a Python library that makes it easier to draw text with multiple styles in Matplotlib

Tomás Capretto 93 Dec 28, 2022
2021 grafana arbitrary file read

2021_grafana_arbitrary_file_read base on pocsuite3 try 40 default plugins of grafana alertlist annolist barchart cloudwatch dashlist elasticsearch gra

ATpiu 5 Nov 09, 2022
Python+Numpy+OpenGL: fast, scalable and beautiful scientific visualization

Python+Numpy+OpenGL: fast, scalable and beautiful scientific visualization

Glumpy 1.1k Jan 05, 2023
A python script to visualise explain plans as a graph using graphviz

README Needs to be improved Prerequisites Need to have graphiz installed on the machine. Refer to https://graphviz.readthedocs.io/en/stable/manual.htm

Edward Mallia 1 Sep 28, 2021
Data parsing and validation using Python type hints

pydantic Data validation and settings management using Python type hinting. Fast and extensible, pydantic plays nicely with your linters/IDE/brain. De

Samuel Colvin 12.1k Jan 06, 2023
Create matplotlib visualizations from the command-line

MatplotCLI Create matplotlib visualizations from the command-line MatplotCLI is a simple utility to quickly create plots from the command-line, levera

Daniel Moura 46 Dec 16, 2022
TensorDebugger (TDB) is a visual debugger for deep learning. It extends TensorFlow with breakpoints + real-time visualization of the data flowing through the computational graph

TensorDebugger (TDB) is a visual debugger for deep learning. It extends TensorFlow (Google's Deep Learning framework) with breakpoints + real-time visualization of the data flowing through the comput

Eric Jang 1.4k Dec 15, 2022
Friday Night Funkin - converts a chart from 4/4 time to 6/8 time, or from regular to swing tempo.

Chart to swing converter As seen in https://twitter.com/i_winxd/status/1462220493558366214 A program written in python that converts a chart from 4/4

5 Dec 23, 2022
📊 Charts with pure python

A zero-dependency python package that prints basic charts to a Jupyter output Charts supported: Bar graphs Scatter plots Histograms 🍑 📊 👏 Examples

Max Humber 54 Oct 04, 2022
Automatization of BoxPlot graph usin Python MatPlotLib and Excel

BoxPlotGraphAutomation Automatization of BoxPlot graph usin Python / Excel. This file is an automation of BoxPlot-Graph using python graph library mat

EricAugustin 1 Feb 07, 2022
A Simple Flask-Plotly Example for NTU 110-1 DSSI Class

A Simple Flask-Plotly Example for NTU 110-1 DSSI Class Live Demo Prerequisites We will use Flask and Ploty to build a Flask application. If you haven'

Ting Ni Wu 1 Dec 11, 2021
Simple function to plot multiple barplots in the same figure.

Simple function to plot multiple barplots in the same figure. Supports padding and custom color.

Matthias Jakobs 2 Feb 21, 2022
paintable GitHub contribute table

githeart paintable github contribute table how to use: Functions key color select 1,2,3,4,5 clear c drawing mode mode on turn off e print paint matrix

Bahadır Araz 27 Nov 24, 2022
Simple spectra visualization tool for astronomers

SpecViewer A simple visualization tool for astronomers. Dependencies Python = 3.7.4 PyQt5 = 5.15.4 pyqtgraph == 0.10.0 numpy = 1.19.4 How to use py

5 Oct 07, 2021
A comprehensive tutorial for plotting focal mechanism

Focal_Mechanisms_Demo A comprehensive tutorial for plotting focal mechanism "beach-balls" using the PyGMT package for Python. (Resulting map of this d

3 Dec 13, 2022
3D-Lorenz-Attractor-simulation-with-python

3D-Lorenz-Attractor-simulation-with-python Animação 3D da trajetória do Atrator de Lorenz, implementada em Python usando o método de Runge-Kutta de 4ª

Hevenicio Silva 17 Dec 08, 2022
A research of IT labor market based especially on hh.ru. Salaries, rate of technologies and etc.

hh_ru_research Проект реализован в учебных целях анализа рынка труда, в особенности по hh.ru Input data В качестве входных данных используются сериали

3 Sep 07, 2022
Farhad Davaripour, Ph.D. 1 Jan 05, 2022