A Python library for plotting hockey rinks with Matplotlib.

Overview

Hockey Rink

A Python library for plotting hockey rinks with Matplotlib.

Installation

pip install hockey_rink

Current Rinks

The following shows the custom rinks currently available for plotting.

from hockey_rink import NHLRink, IIHFRink, NWHLRink
import matplotlib.pyplot as plt

fig, axs = plt.subplots(1, 3, sharey=True, figsize=(12, 6), gridspec_kw={"width_ratios": [1, 98.4/85, 1]})
nhl_rink = NHLRink(rotation=90)
iihf_rink = IIHFRink(rotation=90)
nwhl_rink = NWHLRink(rotation=90)
axs[0] = nhl_rink.draw(ax=axs[0])
axs[1] = iihf_rink.draw(ax=axs[1])
axs[2] = nwhl_rink.draw(ax=axs[2])

The NWHL logo comes from the NWHL site.

Customization

There is also room for customization. The image at the top was created as follows:

rink = Rink(rotation=45, boards={"length": 150, "width": 150, "radius": 75})

Rinks also allow for additional features to be added. Custom features should inherit from RinkFeature and override the _get_centered_xy method. The draw method can also be overridden if the desired feature can't be drawn with a matplotlib Polygon, though _get_centered_xy should still provide the feature's boundaries. CircularImage provides an example of this by inheriting from RinkCircle.

If a custom feature is to be constrained to only display within the rink, the returned object needs to have a set_clip_path method.

Plots

There are currently wrappers available for the following Matplotlib plots:
- plot
- scatter
- arrow
- hexbin
- pcolormesh (heatmap in Hockey Rink)
- contour
- contourf

If you'd like to bypass the wrappers, you can convert coordinates to the proper scale with convert_xy:

rink = Rink()
x, y = rink.convert_xy(x, y)

When plotting to a partially drawn surface, the plot will be applied to the entire rink, not what's visible. This can be avoided by setting plot_range (or plot_xlim and plot_ylim) in the plotting functions where they're available.

It's also important to realize that the plotting functions only allow arguments to be passed without keywords for the coordinates.
ie) hexbin(x, y, values) will throw an error.

The correct call is hexbin(x, y, values=values)

Examples

Let's look at some NWHL data via the Big Data Cup.

The first game is Minnesota vs Boston, so we'll go with that and do a scatter plot of each team's shots.

from hockey_rink import NWHLRink
import pandas as pd

df = pd.read_csv("https://raw.githubusercontent.com/bigdatacup/Big-Data-Cup-2021/main/hackathon_nwhl.csv")
game_df = df.loc[(df["Home Team"] == "Minnesota Whitecaps") & (df["Away Team"] == "Boston Pride")]
shots = game_df.loc[(game_df.Event.isin(["Shot", "Goal"]))]
boston_shots = shots[shots.Team == "Boston Pride"]
minnesota_shots = shots[shots.Team == "Minnesota Whitecaps"]
rink = NWHLRink(x_shift=100, y_shift=42.5)
ax = rink.draw()
rink.scatter(boston_shots["X Coordinate"], boston_shots["Y Coordinate"])
rink.scatter(200 - minnesota_shots["X Coordinate"], 85 - minnesota_shots["Y Coordinate"])

Extending the example, let's look at all of Boston's passes.

boston_passes = game_df.loc[(game_df.Team == "Boston Pride") & (game_df.Event == "Play")]
ax.clear()
rink.draw()
arrows = rink.arrow(boston_passes["X Coordinate"], boston_passes["Y Coordinate"], 
                    boston_passes["X Coordinate 2"], boston_passes["Y Coordinate 2"], color="yellow")

For some of the other plots, let's look at some NHL shooting percentages.

To mix things up a little, binsize will take different values in each plot and the heatmap won't include shots from below the goal line. We'll also throw in a colorbar for the contour plot.

from hockey_rink import NHLRink
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

pbp = pd.read_csv("https://hockey-data.harryshomer.com/pbp/nhl_pbp20192020.csv.gz", compression="gzip")
pbp["goal"] = (pbp.Event == "GOAL").astype(int)
pbp["x"] = np.abs(pbp.xC)
pbp["y"] = pbp.yC * np.sign(pbp.xC)
shots = pbp.loc[(pbp.Ev_Zone == "Off") & ~pbp.x.isna() & ~pbp.y.isna() & (pbp.Event.isin(["GOAL", "SHOT", "MISS"]))]

fig, axs = plt.subplots(1, 3, figsize=(14, 8))
rink = NHLRink(rotation=270)
for i in range(3):
    rink.draw(ax=axs[i], display_range="ozone")
contour_img = rink.contourf(shots.x, shots.y, values=shots.goal, ax=axs[0], cmap="bwr", 
                            plot_range="ozone", binsize=10, levels=50, statistic="mean")
plt.colorbar(contour_img, ax=axs[0], orientation="horizontal")
rink.heatmap(shots.x, shots.y, values=shots.goal, ax=axs[1], cmap="magma",
             plot_xlim=(25, 89), statistic="mean", vmax=0.2, binsize=3)
rink.hexbin(shots.x, shots.y, values=shots.goal, ax=axs[2], binsize=(8, 12), plot_range="ozone", zorder=25, alpha=0.85)

Inspiration

This project was partly inspired by mplsoccer.

Hopefully, it can lower a barrier for someone looking to get involved in hockey analytics.

Contact

You can find me on twitter @the_bucketless or email me at [email protected] if you'd like to get in touch.

Data Visualization Guide for Presentations, Reports, and Dashboards

This is a highly practical and example-based guide on visually representing data in reports and dashboards.

Anton Zhiyanov 395 Dec 29, 2022
A script written in Python that generate output custom color (HEX or RGB input to x1b hexadecimal)

ColorShell ─ 1.5 Planned for v2: setup.sh for setup alias This script converts HEX and RGB code to x1b x1b is code for colorize outputs, works on ou

Riley 4 Oct 31, 2021
A Simple Flask-Plotly Example for NTU 110-1 DSSI Class

A Simple Flask-Plotly Example for NTU 110-1 DSSI Class Live Demo Prerequisites We will use Flask and Ploty to build a Flask application. If you haven'

Ting Ni Wu 1 Dec 11, 2021
Streaming pivot visualization via WebAssembly

Perspective is an interactive visualization component for large, real-time datasets. Originally developed for J.P. Morgan's trading business, Perspect

The Fintech Open Source Foundation (www.finos.org) 5.1k Dec 27, 2022
Show Data: Show your dataset in web browser!

Show Data is to generate html tables for large scale image dataset, especially for the dataset in remote server. It provides some useful commond line tools and fully customizeble API reference to gen

Dechao Meng 83 Nov 26, 2022
Designed a greedy algorithm based on Markov sequential decision-making process in MATLAB/Python to optimize using Gurobi solver

Designed a greedy algorithm based on Markov sequential decision-making process in MATLAB/Python to optimize using Gurobi solver, the wheel size, gear shifting sequence by modeling drivetrain constrai

Sabbella Prasanna 1 Jan 11, 2022
Implementation of SOMs (Self-Organizing Maps) with neighborhood-based map topologies.

py-self-organizing-maps Simple implementation of self-organizing maps (SOMs) A SOM is an unsupervised method for learning a mapping from a discrete ne

Jonas Grebe 6 Nov 22, 2022
Sci palettes for matplotlib/seaborn

sci palettes for matplotlib/seaborn Installation python3 -m pip install sci-palettes Usage import seaborn as sns import matplotlib.pyplot as plt impor

Qingdong Su 2 Jun 07, 2022
Data Visualizer Web-Application

Viz-It Data Visualizer Web-Application If I ask you where most of the data wrangler looses their time ? It is Data Overview and EDA. Presenting "Viz-I

Sagnik Roy 17 Nov 20, 2022
Voilà, install macOS on ANY Computer! This is really and magic easiest way!

OSX-PROXMOX - Run macOS on ANY Computer - AMD & Intel Install Proxmox VE v7.02 - Next, Next & Finish (NNF). Open Proxmox Web Console - Datacenter N

Gabriel Luchina 654 Jan 09, 2023
This plugin plots the time you spent on a tag as a histogram.

This plugin plots the time you spent on a tag as a histogram.

Tom Dörr 7 Sep 09, 2022
This is a Web scraping project using BeautifulSoup and Python to scrape basic information of all the Test matches played till Jan 2022.

Scraping-test-matches-data This is a Web scraping project using BeautifulSoup and Python to scrape basic information of all the Test matches played ti

Souradeep Banerjee 4 Oct 10, 2022
Easily configurable, chart dashboards from any arbitrary API endpoint. JSON config only

Flask JSONDash Easily configurable, chart dashboards from any arbitrary API endpoint. JSON config only. Ready to go. This project is a flask blueprint

Chris Tabor 3.3k Dec 31, 2022
Minimalistic tool to visualize how the routes to a given target domain change over time, feat. Python 3.10 & mermaid.js

Minimalistic tool to visualize how the routes to a given target domain change over time, feat. Python 3.10 & mermaid.js

Péter Ferenc Gyarmati 1 Jan 17, 2022
A napari plugin for visualising and interacting with electron cryotomograms.

napari-tomoslice A napari plugin for visualising and interacting with electron cryotomograms. Installation You can install napari-tomoslice via pip: p

3 Jan 03, 2023
Pebble is a stat's visualization tool, this will provide a skeleton to develop a monitoring tool.

Pebble is a stat's visualization tool, this will provide a skeleton to develop a monitoring tool.

Aravind Kumar G 2 Nov 17, 2021
Color scales in Python for humans

colorlover Color scales for humans IPython notebook: https://plot.ly/ipython-notebooks/color-scales/ import colorlover as cl from IPython.display impo

Plotly 146 Sep 25, 2022
A Python library created to assist programmers with complex mathematical functions

libmaths was created not only as a learning experience for me, but as a way to make mathematical models in seconds for Python users using mat

Simple 73 Oct 02, 2022
Moscow DEG 2021 elections plots

Построение графиков на основе публичных данных о ДЭГ в Москве в 2021г. Описание Скрипты в данном репозитории позволяют собственноручно построить графи

9 Jul 15, 2022
Create matplotlib visualizations from the command-line

MatplotCLI Create matplotlib visualizations from the command-line MatplotCLI is a simple utility to quickly create plots from the command-line, levera

Daniel Moura 46 Dec 16, 2022