Layered Neural Atlases for Consistent Video Editing

Overview

Layered Neural Atlases for Consistent Video Editing

Project Page | Paper

This repository contains an implementation for the SIGGRAPH Asia 2021 paper Layered Neural Atlases for Consistent Video Editing.

The paper introduces the first approach for neural video unwrapping using an end-to-end optimized interpretable and semantic atlas-based representation, which facilitates easy and intuitive editing in the atlas domain.

Installation Requirements

The code is compatible with Python 3.7 and PyTorch 1.6.

You can create an anaconda environment called neural_atlases with the required dependencies by running:

conda create --name neural_atlases python=3.7 
conda activate neural_atlases 
conda install pytorch=1.6.0 torchvision=0.7.0 cudatoolkit=10.1 matplotlib tensorboard scipy  scikit-image tqdm  opencv -c pytorch
pip install imageio-ffmpeg gdown
python -m pip install detectron2 -f   https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.6/index.html

Data convention

The code expects 3 folders for each video input, e.g. for a video of 50 frames named "blackswan":

  1. data/blackswan: A folder of video frames containing image files in the following convention: blackswan/00000.jpg,blackswan/00001.jpg,...,blackswan/00049.jpg (as in the DAVIS dataset).
  2. data/blackswan_flow: A folder with forward and backward optical flow files in the following convention: blackswan_flow/00000.jpg_00001.jpg.npy,blackswan_flow/00001.jpg_00000.jpg,...,blackswan_flow/00049.jpg_00048.jpg.npy.
  3. data/blackswan_maskrcnn: A folder with rough masks (created by Mask-RCNN or any other way) containing files in the following convention: blackswan_maskrcnn/00000.jpg,blackswan_maskrcnn/00001.jpg,...,blackswan_maskrcnn/00049.jpg

For a few examples of DAVIS sequences run:

gdown https://drive.google.com/uc?id=1WipZR9LaANTNJh764ukznXXAANJ5TChe
unzip data.zip

Masks extraction

Given only the video frames folder data/blackswan it is possible to extract the Mask-RCNN masks (and create the required folder data/blackswan_maskrcnn) by running:

python preprocess_mask_rcnn.py --vid-path data/blackswan --class_name bird

where --class_name determines the COCO class name of the sought foreground object. It is also possible to choose the first instance retrieved by Mask-RCNN by using --class_name anything. This is usefull for cases where Mask-RCNN gets correct masks with wrong classes as in the "libby" video:

python preprocess_mask_rcnn.py --vid-path data/libby --class_name anything

Optical flows extraction

Furthermore, the optical flow folder can be extracted using RAFT. For linking RAFT into the current project run:

git submodule update --init
cd thirdparty/RAFT/
./download_models.sh
cd ../..

For extracting the optical flows (and creating the required folder data/blackswan_flow) run:

python preprocess_optical_flow.py --vid-path data/blackswan --max_long_edge 768

Pretrained models

For downloading a sample set of our pretrained models together with sample edits run:

gdown https://drive.google.com/uc?id=10voSCdMGM5HTIYfT0bPW029W9y6Xij4D
unzip pretrained_models.zip

Training

For training a model on a video, run:

python train.py config/config.json

where the video frames folder is determined by the config parameter "data_folder". Note that in order to reduce the training time it is possible to reduce the evaluation frequency controlled by the parameter "evaluate_every" (e.g. by changing it to 10000). The other configurable parameters are documented inside the file train.py.

Evaluation

During training, the model is evaluated. For running only evaluation on a trained folder run:

python only_evaluate.py --trained_model_folder=pretrained_models/checkpoints/blackswan --video_name=blackswan --data_folder=data --output_folder=evaluation_outputs

where trained_model_folder is the path to a folder that contains the config.json and checkpoint files of the trained model.

Editing

To apply editing, run the script only_edit.py. Examples for the supplied pretrained models for "blackswan" and "boat":

python only_edit.py --trained_model_folder=pretrained_models/checkpoints/blackswan --video_name=blackswan --data_folder=data --output_folder=editing_outputs --edit_foreground_path=pretrained_models/edit_inputs/blackswan/edit_blackswan_foreground.png --edit_background_path=pretrained_models/edit_inputs/blackswan/edit_blackswan_background.png
python only_edit.py --trained_model_folder=pretrained_models/checkpoints/boat --video_name=boat --data_folder=data --output_folder=editing_outputs --edit_foreground_path=pretrained_models/edit_inputs/boat/edit_boat_foreground.png --edit_background_path=pretrained_models/edit_inputs/boat/edit_boat_backgound.png

Where edit_foreground_path and edit_background_path specify the paths to 1000x1000 images of the RGBA atlas edits.

For applying an edit that was done on a frame (e.g. for the pretrained "libby"):

python only_edit.py --trained_model_folder=pretrained_models/checkpoints/libby --video_name=libby --data_folder=data --output_folder=editing_outputs  --use_edit_frame --edit_frame_index=7 --edit_frame_path=pretrained_models/edit_inputs/libby/edit_frame_.png

Citation

If you find our work useful in your research, please consider citing:

@article{kasten2021layered,
  title={Layered Neural Atlases for Consistent Video Editing},
  author={Kasten, Yoni and Ofri, Dolev and Wang, Oliver and Dekel, Tali},
  journal={arXiv preprint arXiv:2109.11418},
  year={2021}
}
Owner
Yoni Kasten
Yoni Kasten
Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction".

GNN_PPI Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction". Lear

Ursa Zrimsek 2 Dec 14, 2022
Algo-burn - Script to configure an Algorand address as a "burn" address for one or more ASA tokens

Algorand Burn Address This is a simple script to illustrate how a "burn address"

GSD 5 May 10, 2022
Api's bulid in Flask perfom to manage Todo Task.

Citymall-task Api's bulid in Flask perfom to manage Todo Task. Installation Requrements : Python: 3.10.0 MongoDB create .env file with variables DB_UR

Aisha Tayyaba 1 Dec 17, 2021
Simple API for UCI Machine Learning Dataset Repository (search, download, analyze)

A simple API for working with University of California, Irvine (UCI) Machine Learning (ML) repository Table of Contents Introduction About Page of the

Tirthajyoti Sarkar 223 Dec 05, 2022
This repository contains the official MATLAB implementation of the TDA method for reverse image filtering

ReverseFilter TDA This repository contains the official MATLAB implementation of the TDA method for reverse image filtering proposed in the paper: "Re

Fergaletto 2 Dec 13, 2021
Code for "Retrieving Black-box Optimal Images from External Databases" (WSDM 2022)

Retrieving Black-box Optimal Images from External Databases (WSDM 2022) We propose how a user retreives an optimal image from external databases of we

joisino 5 Apr 13, 2022
[NeurIPS 2021] Source code for the paper "Qu-ANTI-zation: Exploiting Neural Network Quantization for Achieving Adversarial Outcomes"

Qu-ANTI-zation This repository contains the code for reproducing the results of our paper: Qu-ANTI-zation: Exploiting Quantization Artifacts for Achie

Secure AI Systems Lab 8 Mar 26, 2022
Code for the ICCV'21 paper "Context-aware Scene Graph Generation with Seq2Seq Transformers"

ICCV'21 Context-aware Scene Graph Generation with Seq2Seq Transformers Authors: Yichao Lu*, Himanshu Rai*, Cheng Chang*, Boris Knyazev†, Guangwei Yu,

Layer6 Labs 37 Dec 18, 2022
A modular application for performing anomaly detection in networks

Deep-Learning-Models-for-Network-Annomaly-Detection The modular app consists for mainly three annomaly detection algorithms. The system supports model

Shivam Patel 1 Dec 09, 2021
fklearn: Functional Machine Learning

fklearn: Functional Machine Learning fklearn uses functional programming principles to make it easier to solve real problems with Machine Learning. Th

nubank 1.4k Dec 07, 2022
SelfRemaster: SSL Speech Restoration

SelfRemaster: Self-Supervised Speech Restoration Official implementation of SelfRemaster: Self-Supervised Speech Restoration with Analysis-by-Synthesi

Takaaki Saeki 46 Jan 07, 2023
Analyzing basic network responses to novel classes

novelty-detection Analyzing how AlexNet responds to novel classes with varying degrees of similarity to pretrained classes from ImageNet. If you find

Noam Eshed 34 Oct 02, 2022
Session-aware Item-combination Recommendation with Transformer Network

Session-aware Item-combination Recommendation with Transformer Network 2nd place (0.39224) code and report for IEEE BigData Cup 2021 Track1 Report EDA

Tzu-Heng Lin 6 Mar 10, 2022
An adaptive hierarchical energy management strategy for hybrid electric vehicles

An adaptive hierarchical energy management strategy This project contains the source code of an adaptive hierarchical EMS combining heuristic equivale

19 Dec 13, 2022
Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery

Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery Lorien is an infrastructure to massively explore/benchmark the best sc

Amazon Web Services - Labs 45 Dec 12, 2022
Exploring Image Deblurring via Blur Kernel Space (CVPR'21)

Exploring Image Deblurring via Encoded Blur Kernel Space About the project We introduce a method to encode the blur operators of an arbitrary dataset

VinAI Research 118 Dec 19, 2022
CoSMA: Convolutional Semi-Regular Mesh Autoencoder. From Paper "Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes"

Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes Implementation of CoSMA: Convolutional Semi-Regular Mesh Autoencoder arXiv p

Fraunhofer SCAI 10 Oct 11, 2022
Regularized Frank-Wolfe for Dense CRFs: Generalizing Mean Field and Beyond

CRF - Conditional Random Fields A library for dense conditional random fields (CRFs). This is the official accompanying code for the paper Regularized

Đ.Khuê Lê-Huu 21 Nov 26, 2022
University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN

Music-Sentiment-Transfer University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN Poster: Music Sentiment Transfer

Miles Sigel 2 Jan 24, 2022
Pytorch Implementation for NeurIPS (oral) paper: Pixel Level Cycle Association: A New Perspective for Domain Adaptive Semantic Segmentation

Pixel-Level Cycle Association This is the Pytorch implementation of our NeurIPS 2020 Oral paper Pixel-Level Cycle Association: A New Perspective for D

87 Oct 19, 2022