SCALoss: Side and Corner Aligned Loss for Bounding Box Regression (AAAI2022).

Related tags

Deep LearningSCALoss
Overview

SCALoss

PyTorch implementation of the paper "SCALoss: Side and Corner Aligned Loss for Bounding Box Regression" (AAAI 2022).

Introduction

corner_center_comp

  • IoU-based loss has the gradient vanish problem in the case of low overlapping bounding boxes with slow convergence speed.
  • Side Overlap can put more penalty for low overlapping bounding box cases and Corner Distance can speed up the convergence.
  • SCALoss, which combines Side Overlap and Corner Distance, can serve as a comprehensive similarity measure, leading to better localization performance and faster convergence speed.

Prerequisites

Install

Conda is not necessary for the installation. Nevertheless, the installation process here is described using it.

$ conda create -n sca-yolo python=3.8 -y
$ conda activate sca-yolo
$ git clone https://github.com/Turoad/SCALoss
$ cd SCALoss
$ pip install -r requirements.txt

Getting started

Train a model:

python train.py --data [dataset config] --cfg [model config] --weights [path of pretrain weights] --batch-size [batch size num]

For example, to train yolov3-tiny on COCO dataset from scratch with batch size=128.

python train.py --data coco.yaml --cfg yolov3-tiny.yaml --weights '' --batch-size 128

For multi-gpu training, it is recommended to use:

python -m torch.distributed.launch --nproc_per_node 4 train.py --img 640 --batch 32 --epochs 300 --data coco.yaml --weights '' --cfg yolov3.yaml --device 0,1,2,3

Test a model:

python val.py --data coco.yaml --weights runs/train/exp15/weights/last.pt --img 640 --iou-thres=0.65

Results and Checkpoints

YOLOv3-tiny

Model mAP
0.5:0.95
AP
0.5
AP
0.65
AP
0.75
AP
0.8
AP
0.9
IoU 18.8 36.2 27.2 17.3 11.6 1.9
GIoU
relative improv.(%)
18.8
0%
36.2
0%
27.1
-0.37%
17.6
1.73%
11.8
1.72%
2.1
10.53%
DIoU
relative improv.(%)
18.8
0%
36.4
0.55%
26.9
-1.1%
17.2
-0.58%
11.8
1.72%
1.9
0%
CIoU
relative improv.(%)
18.9
0.53%
36.6
1.1%
27.3
0.37%
17.2
-0.58%
11.6
0%
2.1
10.53%
SCA
relative improv.(%)
19.9
5.85%
36.6
1.1%
28.3
4.04%
19.1
10.4%
13.3
14.66%
2.7
42.11%

The convergence curves of different losses on YOLOV3-tiny: converge curve

YOLOv3

Model mAP
0.5:0.95
AP
0.5
AP
0.65
AP
0.75
AP
0.8
AP
0.9
IoU 44.8 64.2 57.5 48.8 41.8 20.7
GIoU
relative improv.(%)
44.7
-0.22%
64.4
0.31%
57.5
0%
48.5
-0.61%
42
0.48%
20.4
-1.45%
DIoU
relative improv.(%)
44.7
-0.22%
64.3
0.16%
57.5
0%
48.9
0.2%
42.1
0.72%
19.8
-4.35%
CIoU
relative improv.(%)
44.7
-0.22%
64.3
0.16%
57.5
0%
48.9
0.2%
41.7
-0.24%
19.8
-4.35%
SCA
relative improv.(%)
45.3
1.12%
64.1
-0.16%
57.9
0.7%
49.9
2.25%
43.3
3.59%
21.4
3.38%

YOLOV5s

comming soon

Citation

If our paper and code are beneficial to your work, please consider citing:

@inproceedings{zheng2022scaloss,
  title={SCALoss: Side and Corner Aligned Loss for Bounding Box Regression},
  author={Zheng, Tu and Zhao, Shuai and Liu, Yang and Liu, Zili and Cai, Deng},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  year={2022}
}

Acknowledgement

The code is modified from ultralytics/yolov3.

You might also like...
An implementation for the loss function proposed in Decoupled Contrastive Loss paper.

Decoupled-Contrastive-Learning This repository is an implementation for the loss function proposed in Decoupled Contrastive Loss paper. Requirements P

Implement of "Training deep neural networks via direct loss minimization" in PyTorch for 0-1 loss

This is the implementation of "Training deep neural networks via direct loss minimization" published at ICML 2016 in PyTorch. The implementation targe

Official PyTorch implementation of
Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco

CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022)
CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022)

CMUA-Watermark The official code for CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022) arxiv. It is bas

Repository for
Repository for "Improving evidential deep learning via multi-task learning," published in AAAI2022

Improving evidential deep learning via multi task learning It is a repository of AAAI2022 paper, “Improving evidential deep learning via multi-task le

Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

Code repository for paper `Skeleton Merger: an Unsupervised Aligned Keypoint Detector`.
Code repository for paper `Skeleton Merger: an Unsupervised Aligned Keypoint Detector`.

Skeleton Merger Skeleton Merger, an Unsupervised Aligned Keypoint Detector. The paper is available at https://arxiv.org/abs/2103.10814. A map of the r

Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021)
Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021)

Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021) PyTorch implementation of Learning RAW-to-sRGB Mappings with Inaccurat

Owner
TuZheng
TuZheng
Expressive Power of Invariant and Equivaraint Graph Neural Networks (ICLR 2021)

Expressive Power of Invariant and Equivaraint Graph Neural Networks In this repository, we show how to use powerful GNN (2-FGNN) to solve a graph alig

Marc Lelarge 36 Dec 12, 2022
Object DGCNN and DETR3D, Our implementations are built on top of MMdetection3D.

This repo contains the implementations of Object DGCNN (https://arxiv.org/abs/2110.06923) and DETR3D (https://arxiv.org/abs/2110.06922). Our implementations are built on top of MMdetection3D.

Wang, Yue 539 Jan 07, 2023
implicit displacement field

Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields [project page][paper][cite] Geometry-Consistent Neural Shape Represe

Yifan Wang 100 Dec 19, 2022
Official Code Release for Container : Context Aggregation Network

Container: Context Aggregation Network Official Code Release for Container : Context Aggregation Network Comparion between CNN, MLP-Mixer and Transfor

peng gao 42 Nov 17, 2021
StyleTransfer - Open source style transfer project, based on VGG19

StyleTransfer - Open source style transfer project, based on VGG19

Patrick martins de lima 9 Dec 13, 2021
CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum

CO-PILOT CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum, NeurIPS 2021, Shuang Ao, Tianyi Zhou, Guodong Long, Qingh

Shuang Ao 1 Feb 18, 2022
Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN

Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN If you use this code for your research, please cite ou

41 Dec 08, 2022
Randstad Artificial Intelligence Challenge (powered by VGEN). Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato

Randstad Artificial Intelligence Challenge (powered by VGEN) Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato Struttura director

Stefano Fiorucci 1 Nov 13, 2021
Python Actor concurrency library

Thespian Actor Library This library provides the framework of an Actor model for use by applications implementing Actors. Thespian Site with Documenta

Kevin Quick 177 Dec 11, 2022
SAT: 2D Semantics Assisted Training for 3D Visual Grounding, ICCV 2021 (Oral)

SAT: 2D Semantics Assisted Training for 3D Visual Grounding SAT: 2D Semantics Assisted Training for 3D Visual Grounding by Zhengyuan Yang, Songyang Zh

Zhengyuan Yang 22 Nov 30, 2022
Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion

Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion Preface This directory provides an implementation of the algori

Jean-Samuel Leboeuf 0 Nov 03, 2021
Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022)

Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022) Junjie Ye, Changhong Fu, Guangze Zheng, Danda Pani Paudel, and Guang Chen. Uns

Intelligent Vision for Robotics in Complex Environment 91 Dec 30, 2022
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a

Tianxiang Sun 149 Jan 04, 2023
Weighted K Nearest Neighbors (kNN) algorithm implemented on python from scratch.

kNN_From_Scratch I implemented the k nearest neighbors (kNN) classification algorithm on python. This algorithm is used to predict the classes of new

1 Dec 14, 2021
BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer

BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer Project Page | Paper | Video State-of-the-art image-to-image translatio

47 Dec 06, 2022
A tool to prepare websites grabbed with wget for local viewing.

makelocal A tool to prepare websites grabbed with wget for local viewing. exapmples After fetching xkcd.com with: wget -r -no-remove-listing -r -N --p

5 Apr 23, 2022
Unofficial Implementation of MLP-Mixer, gMLP, resMLP, Vision Permutator, S2MLPv2, RaftMLP, ConvMLP, ConvMixer in Jittor and PyTorch.

Unofficial Implementation of MLP-Mixer, gMLP, resMLP, Vision Permutator, S2MLPv2, RaftMLP, ConvMLP, ConvMixer in Jittor and PyTorch! Now, Rearrange and Reduce in einops.layers.jittor are support!!

130 Jan 08, 2023
Simple Tensorflow implementation of Toward Spatially Unbiased Generative Models (ICCV 2021)

Spatial unbiased GANs — Simple TensorFlow Implementation [Paper] : Toward Spatially Unbiased Generative Models (ICCV 2021) Abstract Recent image gener

Junho Kim 16 Apr 15, 2022
Using image super resolution models with vapoursynth and speeding them up with TensorRT

vs-RealEsrganAnime-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Also a docker image since

4 Aug 23, 2022
This GitHub repo consists of Code and Some results of project- Diabetes Treatment using Gold nanoparticles. These Consist of ML Models used for prediction Diabetes and further the basic theory and working of Gold nanoparticles.

GoldNanoparticles This GitHub repo consists of Code and Some results of project- Diabetes Treatment using Gold nanoparticles. These Consist of ML Mode

1 Jan 30, 2022