Single Image Deraining Using Bilateral Recurrent Network (TIP 2020)

Overview

Single Image Deraining Using Bilateral Recurrent Network

Introduction

Single image deraining has received considerable progress based on deep convolutional neural network. Most existing deep deraining methods follow residual learning in image denoising to learn rain streak layer, and perform limited in restoring background image layer. In this work, we propose bilateral recurrent network (BRN) to allow the interplay between rain streak and background image layers. In particular, two recurrent networks are coupled to simultaneously exploit these two layers. Instead of naive combination, we propose bilateral LSTMs, which not only can respectively propagate deep features across stages, but also bring the interplay between these two SRNs, which is essential in separating two layers from rainy observation. The experimental results demonstrate that our BRN notably outperforms state-of-the-art deep deraining networks on synthetic datasets quantitatively and qualitatively. The proposed method also performs more favorably in terms of generalization performance on real-world rainy dataset.

Prerequisites

  • Python 3.6, PyTorch >= 0.4.0
  • Requirements: opencv-python, tensorboardX
  • Platforms: Ubuntu 16.04, cuda-10.0 & cuDNN v-7.5
  • MATLAB for computing evaluation metrics

Datasets

SRN and BRN are evaluated on seven datasets*: Rain100H [1], Rain100L [1], RainHeavy*[5], RainLight*[5], Rain12 [2], Rain1400 [3] and SPA-data [4]. Please download the testing datasets from BaiduYun or OneDrive, download the RainHeavy*[5] and RainLight*[5] from here, and download the testing generalization dataset SPA-data [4] from GoogleDrive. And then place the unzipped folders into './datasets/'. Make sure that the path of the extracted file is consistent with '--data_path'.

*We note that:

(i) The datasets of Rain100H and Rain100L have been updated by the authors. We notate them as RainHeavy* and RainLight*, that can be downloaded from here.

(ii) We upload the old datasets of Rain100H and Rain100L to BaiduYun or OneDrive. For Rain100H, we strictly exclude 546 rainy images that have the same background contents with testing images.

Getting Started

1) Testing

We have placed our pre-trained models into ./logs/.

Run shell scripts to test the models:

bash test_RainHeavy.sh   # test models on RainHeavy
bash test_RainLight.sh   # test models on RainLight
bash test_Rain100H.sh   # test models on Rain100H
bash test_Rain100L.sh   # test models on Rain100L
bash test_Rain12.sh     # test models on Rain12
bash test_Rain1400.sh   # test models on Rain1400
bash test_real.sh       # test models on SPA-data

(i) On RainHeavy* [5] and RainLight* [5], we re-train all the competing methods. We have uploaded all the trained models to ./logs/RainHeavy/ and ./logs/RainLight/. You can use their source codes to reproduce the results in the paper.

(ii) All the results in the paper are also available at GoogleDrive. You can place the downloaded results into ./results/, and directly compute all the evaluation metrics in this paper.

2) Evaluation metrics

We also provide the MATLAB scripts to compute the average PSNR and SSIM values reported in the paper.

 cd ./statistic
 run statistic_RainHeavy.m
 run statistic_RainLight.m
 run statistic_Rain100H.m
 run statistic_Rain100L.m
 run statistic_Rain12.m
 run statistic_Rain1400.m
 run statistic_real.m

3) Training

python train.py --save_path path_to_save_trained_models  --data_path path_to_training_dataset

*If you use the new dataset by yourself, please make sure to define new function for preprocessing training patches in DerainDataset.py.

References

[1] Yang W, Tan R, Feng J, Liu J, Guo Z, and Yan S. Deep joint rain detection and removal from a single image. In IEEE CVPR 2017.

[2] Li Y, Tan RT, Guo X, Lu J, and Brown M. Rain streak removal using layer priors. In IEEE CVPR 2016.

[3] Fu X, Huang J, Zeng D, Huang Y, Ding X, and Paisley J. Removing rain from single images via a deep detail network. In IEEE CVPR 2017.

[4] Wang T, Yang X, Xu K, Chen S, Zhang Q, and Lau R. Spatial attentive single-image deraining with a high quality real rain dataset. In IEEE CVPR 2019.

[5] Yang W, Tan R, Feng J, Liu J, Yan S, and Guo Z. Joint rain detection and removal from a single image with contextualized deep networks. IEEE T-PAMI 2019.

We propose a new method for effective shadow removal by regarding it as an exposure fusion problem.

Auto-exposure fusion for single-image shadow removal We propose a new method for effective shadow removal by regarding it as an exposure fusion proble

Qing Guo 146 Dec 31, 2022
Python scripts form performing stereo depth estimation using the HITNET model in Tensorflow Lite.

TFLite-HITNET-Stereo-depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in Tensorflow Lite. Stereo depth e

Ibai Gorordo 22 Oct 20, 2022
Wileless-PDGNet Implementation

Wileless-PDGNet Implementation This repo is related to the following paper: Boning Li, Ananthram Swami, and Santiago Segarra, "Power allocation for wi

6 Oct 04, 2022
Localizing Visual Sounds the Hard Way

Localizing-Visual-Sounds-the-Hard-Way Code and Dataset for "Localizing Visual Sounds the Hard Way". The repo contains code and our pre-trained model.

Honglie Chen 58 Dec 07, 2022
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

The source code is temporariy removed, as we are solving potential copyright and license issues with GRANSO (http://www.timmitchell.com/software/GRANS

SUN Group @ UMN 28 Aug 03, 2022
Anagram Generator in Python

Anagrams Generator This is a program for computing multiword anagrams. It makes no effort to come up with sentences that make sense; it only finds ana

Day Fundora 5 Nov 17, 2022
Regularized Frank-Wolfe for Dense CRFs: Generalizing Mean Field and Beyond

CRF - Conditional Random Fields A library for dense conditional random fields (CRFs). This is the official accompanying code for the paper Regularized

Đ.Khuê Lê-Huu 21 Nov 26, 2022
Exploring Relational Context for Multi-Task Dense Prediction [ICCV 2021]

Adaptive Task-Relational Context (ATRC) This repository provides source code for the ICCV 2021 paper Exploring Relational Context for Multi-Task Dense

David Brüggemann 35 Dec 05, 2022
Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Database

Python cx_Oracle Notebooks, 2022 The repository contains Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Da

Christopher Jones 13 Dec 15, 2022
Pathdreamer: A World Model for Indoor Navigation

Pathdreamer: A World Model for Indoor Navigation This repository hosts the open source code for Pathdreamer, to be presented at ICCV 2021. Paper | Pro

Google Research 122 Jan 04, 2023
A Fast Monotone Rotating Shallow Water model

pyRSW A Fast Monotone Rotating Shallow Water model How fast? As fast as a sustained 2 Gflop/s per core on a 2.5 GHz cpu (or 2048 Gflop/s with 1024 cor

Guillaume Roullet 13 Sep 28, 2022
Pytorch implementation of the paper "Class-Balanced Loss Based on Effective Number of Samples"

Class-balanced-loss-pytorch Pytorch implementation of the paper Class-Balanced Loss Based on Effective Number of Samples presented at CVPR'19. Yin Cui

Vandit Jain 697 Dec 29, 2022
MiniSom is a minimalistic implementation of the Self Organizing Maps

MiniSom Self Organizing Maps MiniSom is a minimalistic and Numpy based implementation of the Self Organizing Maps (SOM). SOM is a type of Artificial N

Giuseppe Vettigli 1.2k Jan 03, 2023
Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks

Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks Official implementation of paper Towards Practic

Xiangyu Qi 8 Dec 30, 2022
Code & Data for Enhancing Photorealism Enhancement

Enhancing Photorealism Enhancement Stephan R. Richter, Hassan Abu AlHaija, Vladlen Koltun Paper | Website (with side-by-side comparisons) | Video (Pap

Intelligent Systems Lab Org 1.1k Dec 31, 2022
Uncertain natural language inference

Uncertain Natural Language Inference This repository hosts the code for the following paper: Tongfei Chen*, Zhengping Jiang*, Adam Poliak, Keisuke Sak

Tongfei Chen 14 Sep 01, 2022
Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019)

Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019) Introduction Official implementation of Dynamic Multi-scale Filters for Semant

23 Oct 21, 2022
Combinatorially Hard Games where the levels are procedurally generated

puzzlegen Implementation of two procedurally simulated environments with gym interfaces. IceSlider: the agent needs to reach and stop on the pink squa

Autonomous Learning Group 3 Jun 26, 2022
Keras community contributions

keras-contrib : Keras community contributions Keras-contrib is deprecated. Use TensorFlow Addons. The future of Keras-contrib: We're migrating to tens

Keras 1.6k Dec 21, 2022
SymPy-powered, Wolfram|Alpha-like answer engine totally in your browser, without backend computation

SymPy Beta SymPy Beta is a fork of SymPy Gamma. The purpose of this project is to run a SymPy-powered, Wolfram|Alpha-like answer engine totally in you

Liumeo 25 Dec 21, 2022