Motion planning environment for Sampling-based Planners

Overview

Sampling-Based Motion Planners' Testing Environment

Python version CI Build docs Code style: black License DOI

Sampling-based motion planners' testing environment (sbp-env) is a full feature framework to quickly test different sampling-based algorithms for motion planning. sbp-env focuses on the flexibility of tinkering with different aspects of the framework, and had divided the main planning components into two categories (i) samplers and (ii) planners.

The focus of motion planning research had been mainly on (i) improving the sampling efficiency (with methods such as heuristic or learned distribution) and (ii) the algorithmic aspect of the planner using different routines to build a connected graph. Therefore, by separating the two components one can quickly swap out different components to test novel ideas.

Have a look at the documentations for more detail information. If you are looking for the previous code for the RRdT* paper it is now archived at soraxas/rrdt.

Installation

Optional

I recommend first creates a virtual environment with

# assumes python3 and bash shell
python -m venv sbp_env
source sbp_env/bin/activate

Install dependencies

You can install all the needed packages with pip.

pip install -r requirements.txt

There is also an optional dependency on klampt if you want to use the 3D simulator. Refer to its installation guide for details.

Quick Guide

You can get a detailed help message with

python main.py --help

but the basic syntax is

python main.py <PLANNER> <MAP> [options]

It will open a new window that display a map on it. Every white pixel is assumed to be free, and non-white pixels are obstacles. You will need to use your mouse to select two points on the map, the first will be set as the starting point and the second as the goal point.

Demos

Run maps with different available Planners

This repository contains a framework to performs quick experiments for Sampling-Based Planners (SBPs) that are implemented in Python. The followings are planners that had implemented and experimented in this framework.

Note that the commands shown in the respective demos can be customised with additional options. In fact, the actual command format used for the demonstrations is

python main.py <PLANNER> maps/room1.png start <sx>,<sy> goal <sx>,<sy> -vv

to have a fix set of starting and goal points for consistent visualisation, but we omitted the start/goal options in the following commands for clarity.

RRdT*

python main.py rrdt maps/room1.png -vv

RRdT* Planner

RRT*

python main.py rrt maps/room1.png -vv

RRT* Planner

Bi-RRT*

python main.py birrt maps/room1.png -vv

Bi-RRT* Planner

Informed RRT*

python main.py informedrrt maps/room1.png -vv

Informed RRT* Planner

The red ellipse shown is the dynamic sampling area for Informed RRT*

Others

There are also some other planners included in this repository. Some are preliminary planner that inspired RRdT*, some are planners with preliminary ideas, and some are useful for debugging.

Reference to this repository

You can use the following citation if you use this repository for your research

@article{lai2021SbpEnv,
  doi = {10.21105/joss.03782},
  url = {https://doi.org/10.21105/joss.03782},
  year = {2021},
  publisher = {The Open Journal},
  volume = {6},
  number = {66},
  pages = {3782},
  author = {Tin Lai},
  title = {sbp-env: A Python Package for Sampling-based Motion Planner and Samplers},
  journal = {Journal of Open Source Software}
}
Comments
  • question on (example) usage

    question on (example) usage

    According to the submitted paper, with sbp-env "one can quickly swap out different components to test novel ideas" and "validate ... hypothesis rapidly". However, from the examples in the documentation, it is unclear to me how I can obtain performance metrics on the planners when a run a test.

    Is there a way to save such metrics to a file or print them when running planners in sbp-env? If not, this might be a nice feature to implement in a future version. Otherwise, you could consider adding an example to the documentation on how to compare different planners in the same scenario.

    (this question is part of the JOSS review openjournals/joss-reviews#3782)

    opened by OlgerSiebinga 5
  • Path recognition issue

    Path recognition issue

    I tried some source, destination positions with the following command and there seems some issue in recognition of the path. python main.py rrt maps/4d.png --engine 4d

    Attaching screenshot below: Screenshot from 2021-10-07 00-43-15

    (Part of the JOSS review openjournals/joss-reviews#3782)

    opened by KanishAnand 3
  • Python version compatibility with scipy

    Python version compatibility with scipy

    Mentioning the requirement of python version >= 3.8 in README would also help users the way it's done over here. Python versions < 3.8 are not compatible with scipy 1.6

    (Part of the JOSS review openjournals/joss-reviews#3782)

    opened by KanishAnand 3
  • Suggestion to make installation easier

    Suggestion to make installation easier

    I was wondering why you have the following remark block in your installation instructions: image

    I think it would be easier to add those two packages to the file requirements_klampt.txt. That way they'll be installed automatically, it saves the user an extra action. Or is there any reason I'm missing why that shouldn't be done?

    opened by OlgerSiebinga 3
  • Exception after running the example from the documentation

    Exception after running the example from the documentation

    When I run the example from the quick start page in the documentation, an exception occurs.

    The command: python main.py rrt maps/room1.png

    The exception:

    Traceback (most recent call last):
      File "main.py", line 287, in <module>
        environment.run()
      File "C:\Users\Olger\PycharmProjects\sbp-env\env.py", line 198, in run
        self.visualiser.terminates_hook()
      File "C:\Users\Olger\PycharmProjects\sbp-env\visualiser.py", line 148, in terminates_hook
        self.env_instance.sampler.visualiser.terminates_hook()
      File "C:\Users\Olger\PycharmProjects\sbp-env\env.py", line 126, in __getattr__
        return object.__getattribute__(self.visualiser, attr)
    AttributeError: 'PygameEnvVisualiser' object has no attribute 'sampler'
    

    The exception only occurs after the simulation has finished so it seems like a minor problem. Although I'm not really sure what happens at env.py, line 126, in __getattr__ and why. So, I don't have a proposed fix.

    opened by OlgerSiebinga 2
  • invalid start and goal point can be specified with command-line interface

    invalid start and goal point can be specified with command-line interface

    When specifying a goal and start point in the commands line, it is possible to specify invalid points. Specifying an invalid start and goal will result in an infinite loop.

    For example, running: python main.py rrt maps\room1.png start 10,10 goal 15,15, will result in an infinite loop with the following GUI:

    image

    Expected behavior when supplying an invalid option would be an exception.

    opened by OlgerSiebinga 1
  • Test Instructions

    Test Instructions

    Though it's standard, adding instruction to run tests in the documentation might be helpful for users wanting to contribute.

    (Part of the JOSS review openjournals/joss-reviews#3782)

    opened by KanishAnand 1
  • Graph building of prm planner without user information

    Graph building of prm planner without user information

    The graph building method in the prm planner (build_graph() in prmPlanner.py) can take quite some time when a large number of nodes is used. However, the user is not notified that the planner is still processing data. The first time I encountered this, I suspected the software got stuck in an infinite loop because the window was not responding anymore. I think this can be easily fixed by adding a tqdm bar in the build_graph() method (at line 83)

    (this suggestion is part of the JOSS review openjournals/joss-reviews#3782)

    opened by OlgerSiebinga 1
  • Skip-optimality Problem

    Skip-optimality Problem

    Hi 1.I am wonderingt that the parameter (use_rtree)in choose_least_cost_parent() function and rewire() funtion (RRT). Is it no longer necessary because we use numpy's calculation method? 2. When i run the informedrrt algorithm, the ellipse display of the graphic drawing does not appear as shown in the document. How can it be displayed? I'm sorry to interrupt you from your busy schedule.

    opened by Jiawei-00 7
Releases(v2.0.1)
Classify the disease status of a plant given an image of a passion fruit

Passion Fruit Disease Detection I tried to create an accurate machine learning models capable of localizing and identifying multiple Passion Fruits in

3 Nov 09, 2021
ReSSL: Relational Self-Supervised Learning with Weak Augmentation

ReSSL: Relational Self-Supervised Learning with Weak Augmentation This repository contains PyTorch evaluation code, training code and pretrained model

mingkai 45 Oct 25, 2022
PyTorch implementation of UNet++ (Nested U-Net).

PyTorch implementation of UNet++ (Nested U-Net) This repository contains code for a image segmentation model based on UNet++: A Nested U-Net Architect

4ui_iurz1 642 Jan 04, 2023
This repository implements Douzero's interface to IGCA.

douzero-interface-for-ICGA This repository implements Douzero's interface to ICGA. ./douzero: This directory stores Doudizhu AI projects. ./interface:

zhanggenjin 4 Aug 07, 2022
This repository contains the source code and data for reproducing results of Deep Continuous Clustering paper

Deep Continuous Clustering Introduction This is a Pytorch implementation of the DCC algorithms presented in the following paper (paper): Sohil Atul Sh

Sohil Shah 197 Nov 29, 2022
Research code for the paper "Variational Gibbs inference for statistical estimation from incomplete data".

Variational Gibbs inference (VGI) This repository contains the research code for Simkus, V., Rhodes, B., Gutmann, M. U., 2021. Variational Gibbs infer

Vaidotas Šimkus 1 Apr 08, 2022
A multi-mode modulator for multi-domain few-shot classification (ICCV)

A multi-mode modulator for multi-domain few-shot classification (ICCV)

Yanbin Liu 8 Apr 28, 2022
Bachelor's Thesis in Computer Science: Privacy-Preserving Federated Learning Applied to Decentralized Data

federated is the source code for the Bachelor's Thesis Privacy-Preserving Federated Learning Applied to Decentralized Data (Spring 2021, NTNU) Federat

Dilawar Mahmood 25 Nov 30, 2022
An automated algorithm to extract the linear blend skinning (LBS) from a set of example poses

Dem Bones This repository contains an implementation of Smooth Skinning Decomposition with Rigid Bones, an automated algorithm to extract the Linear B

Electronic Arts 684 Dec 26, 2022
Source code release of the paper: Knowledge-Guided Deep Fractal Neural Networks for Human Pose Estimation.

GNet-pose Project Page: http://guanghan.info/projects/guided-fractal/ UPDATE 9/27/2018: Prototxts and model that achieved 93.9Pck on LSP dataset. http

Guanghan Ning 83 Nov 21, 2022
SpecAugmentPyTorch - A Pytorch (support batch and channel) implementation of GoogleBrain's SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition

SpecAugment An implementation of SpecAugment for Pytorch How to use Install pytorch, version=1.9.0 (new feature (torch.Tensor.take_along_dim) is used

IMLHF 3 Oct 11, 2022
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning Paper | Poster | Supplementary The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this

Tong Zekun 28 Jan 08, 2023
The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp.

PISE The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp. Requirement conda create -n pise pyt

jinszhang 110 Nov 21, 2022
A PyTorch implementation of NeRF (Neural Radiance Fields) that reproduces the results.

NeRF-pytorch NeRF (Neural Radiance Fields) is a method that achieves state-of-the-art results for synthesizing novel views of complex scenes. Here are

Yen-Chen Lin 3.2k Jan 08, 2023
This repository is a basic Machine Learning train & validation Template (Using PyTorch)

pytorch_ml_template This repository is a basic Machine Learning train & validation Template (Using PyTorch) TODO Markdown 사용법 Build Docker 사용법 Anacond

1 Sep 15, 2022
ObjectDrawer-ToolBox: a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system

ObjectDrawer-ToolBox is a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system, Object Drawer.

77 Jan 05, 2023
Density-aware Single Image De-raining using a Multi-stream Dense Network (CVPR 2018)

DID-MDN Density-aware Single Image De-raining using a Multi-stream Dense Network He Zhang, Vishal M. Patel [Paper Link] (CVPR'18) We present a novel d

He Zhang 224 Dec 12, 2022
Image Data Augmentation in Keras

Image data augmentation is a technique that can be used to artificially expand the size of a training dataset by creating modified versions of images in the dataset.

Grace Ugochi Nneji 3 Feb 15, 2022
StyleTransfer - Open source style transfer project, based on VGG19

StyleTransfer - Open source style transfer project, based on VGG19

Patrick martins de lima 9 Dec 13, 2021
Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Set Recognition"

Adversarial Reciprocal Points Learning for Open Set Recognition Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Se

Guangyao Chen 78 Dec 28, 2022