Image Captioning using CNN and Transformers

Overview

Image-Captioning

Keras/Tensorflow Image Captioning application using CNN and Transformer as encoder/decoder.
In particulary, the architecture consists of three models:

  1. A CNN: used to extract the image features. In this application, it used EfficientNetB0 pre-trained on imagenet.
  2. A TransformerEncoder: the extracted image features are then passed to a Transformer based encoder that generates a new representation of the inputs.
  3. A TransformerDecoder: this model takes the encoder output and the text data sequence as inputs and tries to learn to generate the caption.

Dataset

The model has been trained on 2014 Train/Val COCO dataset. You can download the dataset here. Note that test images are not required for this code to work.

Original dataset has 82783 train images and 40504 validation images; for each image there is a number of captions between 1 and 6. I have preprocessing the dataset per to keep only images that have exactly 5 captions. In fact, the model has been trained to ensure that 5 captions are assigned for each image. After this filtering, the final dataset has 68363 train images and 33432 validation images.
Finally, I serialized the dataset into two json files which you can find in:

COCO_dataset/captions_mapping_train.json
COCO_dataset/captions_mapping_valid.json

Each element in the captions_mapping_train.json file has such a structure :
"COCO_dataset/train2014/COCO_train2014_000000318556.jpg": ["caption1", "caption2", "caption3", "caption4", "caption5"], ...

In same way in the captions_mapping_valid.json :
"COCO_dataset/val2014/COCO_val2014_000000203564.jpg": ["caption1", "caption2", "caption3", "caption4", "caption5"], ...

Dependencies

I have used the following versions for code work:

  • python==3.8.8
  • tensorflow==2.4.1
  • tensorflow-gpu==2.4.1
  • numpy==1.19.1
  • h5py==2.10.0

Training

To train the model you need to follow the following steps :

  1. you have to make sure that the training set images are in the folder COCO_dataset/train2014/ and that validation set images are in COCO_dataset/val2014/.
  2. you have to enter all the parameters necessary for the training in the settings.py file.
  3. start the model training with python3 training.py

My settings

For my training session, I have get best results with this settings.py file :

# Desired image dimensions
IMAGE_SIZE = (299, 299)
# Max vocabulary size
MAX_VOCAB_SIZE = 2000000
# Fixed length allowed for any sequence
SEQ_LENGTH = 25
# Dimension for the image embeddings and token embeddings
EMBED_DIM = 512
# Number of self-attention heads
NUM_HEADS = 6
# Per-layer units in the feed-forward network
FF_DIM = 1024
# Shuffle dataset dim on tf.data.Dataset
SHUFFLE_DIM = 512
# Batch size
BATCH_SIZE = 64
# Numbers of training epochs
EPOCHS = 14

# Reduce Dataset
# If you want reduce number of train/valid images dataset, set 'REDUCE_DATASET=True'
# and set number of train/valid images that you want.
#### COCO dataset
# Max number train dataset images : 68363
# Max number valid dataset images : 33432
REDUCE_DATASET = False
# Number of train images -> it must be a value between [1, 68363]
NUM_TRAIN_IMG = None
# Number of valid images -> it must be a value between [1, 33432]
NUM_VALID_IMG = None
# Data augumention on train set
TRAIN_SET_AUG = True
# Data augmention on valid set
VALID_SET_AUG = False

# Load train_data.json pathfile
train_data_json_path = "COCO_dataset/captions_mapping_train.json"
# Load valid_data.json pathfile
valid_data_json_path = "COCO_dataset/captions_mapping_valid.json"
# Load text_data.json pathfile
text_data_json_path  = "COCO_dataset/text_data.json"

# Save training files directory
SAVE_DIR = "save_train_dir/"

I have training model on full dataset (68363 train images and 33432 valid images) but you can train the model on a smaller number of images by changing the NUM_TRAIN_IMG / NUM_VALID_IMG parameters to reduce the training time and hardware resources required.

Data augmention

I applied data augmentation on the training set during the training to reduce the generalization error, with this transformations (this code is write in dataset.py) :

trainAug = tf.keras.Sequential([
    	tf.keras.layers.experimental.preprocessing.RandomContrast(factor=(0.05, 0.15)),
    	tf.keras.layers.experimental.preprocessing.RandomTranslation(height_factor=(-0.10, 0.10), width_factor=(-0.10, 0.10)),
	tf.keras.layers.experimental.preprocessing.RandomZoom(height_factor=(-0.10, 0.10), width_factor=(-0.10, 0.10)),
	tf.keras.layers.experimental.preprocessing.RandomRotation(factor=(-0.10, 0.10))
])

You can customize your data augmentation by changing this code or disable data augmentation setting TRAIN_SET_AUG = False in setting.py.

My results

This is results of my best training :

Epoch 1/13
1069/1069 [==============================] - 1450s 1s/step - loss: 17.3777 - acc: 0.3511 - val_loss: 13.9711 - val_acc: 0.4819
Epoch 2/13
1069/1069 [==============================] - 1453s 1s/step - loss: 13.7338 - acc: 0.4850 - val_loss: 12.7821 - val_acc: 0.5133
Epoch 3/13
1069/1069 [==============================] - 1457s 1s/step - loss: 12.9772 - acc: 0.5069 - val_loss: 12.3980 - val_acc: 0.5229
Epoch 4/13
1069/1069 [==============================] - 1452s 1s/step - loss: 12.5683 - acc: 0.5179 - val_loss: 12.2659 - val_acc: 0.5284
Epoch 5/13
1069/1069 [==============================] - 1450s 1s/step - loss: 12.3292 - acc: 0.5247 - val_loss: 12.1828 - val_acc: 0.5316
Epoch 6/13
1069/1069 [==============================] - 1443s 1s/step - loss: 12.1614 - acc: 0.5307 - val_loss: 12.1410 - val_acc: 0.5341
Epoch 7/13
1069/1069 [==============================] - 1453s 1s/step - loss: 12.0461 - acc: 0.5355 - val_loss: 12.1234 - val_acc: 0.5354
Epoch 8/13
1069/1069 [==============================] - 1440s 1s/step - loss: 11.9533 - acc: 0.5407 - val_loss: 12.1086 - val_acc: 0.5367
Epoch 9/13
1069/1069 [==============================] - 1444s 1s/step - loss: 11.8838 - acc: 0.5427 - val_loss: 12.1235 - val_acc: 0.5373
Epoch 10/13
1069/1069 [==============================] - 1443s 1s/step - loss: 11.8114 - acc: 0.5460 - val_loss: 12.1574 - val_acc: 0.5367
Epoch 11/13
1069/1069 [==============================] - 1444s 1s/step - loss: 11.7543 - acc: 0.5486 - val_loss: 12.1518 - val_acc: 0.5371

These are good results considering that for each image given as input to the model during training, the error and the accuracy are averaged over 5 captions. However, I spent little time doing model selection and you can improve the results by trying better settings.
For example, you could :

  1. change CNN architecture.
  2. change SEQ_LENGTH, EMBED_DIM, NUM_HEADS, FF_DIM, BATCH_SIZE (etc...) parameters.
  3. change data augmentation transformations/parameters.
  4. etc...

N.B. I have saved my best training results files in the directory save_train_dir/.

Inference

After training and saving the model, you can restore it in a new session to inference captions on new images.
To generate a caption from a new image, you must :

  1. insert the parameters in the file settings_inference.py
  2. run python3 inference.py --image={image_path_file}

Results example

Examples of image output taken from the validation set.

a large passenger jet flying through the sky
a man in a white shirt and black shorts playing tennis
a person on a snowboard in the snow
a boy on a skateboard in the street
a black bear is walking through the grass
a train is on the tracks near a station
Owner
I love computer vision and NLP. I love artificial intelligence. Machine Learning and Big Data master's degree student.
Public scripts, services, and configuration for running a smart home K3S network cluster

makerhouse_network Public scripts, services, and configuration for running MakerHouse's home network. This network supports: TODO features here For mo

Scott Martin 1 Jan 15, 2022
COLMAP - Structure-from-Motion and Multi-View Stereo

COLMAP About COLMAP is a general-purpose Structure-from-Motion (SfM) and Multi-View Stereo (MVS) pipeline with a graphical and command-line interface.

4.7k Jan 07, 2023
RSNA Intracranial Hemorrhage Detection with python

RSNA Intracranial Hemorrhage Detection This is the source code for the first place solution to the RSNA2019 Intracranial Hemorrhage Detection Challeng

24 Nov 30, 2022
A simple consistency training framework for semi-supervised image semantic segmentation

PseudoSeg: Designing Pseudo Labels for Semantic Segmentation PseudoSeg is a simple consistency training framework for semi-supervised image semantic s

Google Interns 143 Dec 13, 2022
Graph Analysis From Scratch

Graph Analysis From Scratch Goal In this notebook we wanted to implement some functionalities to analyze a weighted graph only by using algorithms imp

Arturo Ghinassi 0 Sep 17, 2022
NP DRAW paper released code

NP-DRAW: A Non-Parametric Structured Latent Variable Model for Image Generation This repo contains the official implementation for the NP-DRAW paper.

ZENG Xiaohui 22 Mar 13, 2022
Official code repository for "Exploring Neural Models for Query-Focused Summarization"

Query-Focused Summarization Official code repository for "Exploring Neural Models for Query-Focused Summarization" This is a work in progress. Expect

Salesforce 29 Dec 18, 2022
YOLOX Win10 Project

Introduction 这是一个用于Windows训练YOLOX的项目,相比于官方项目,做了一些适配和修改: 1、解决了Windows下import yolox失败,No such file or directory: 'xxx.xml'等路径问题 2、CUDA out of memory等显存不

5 Jun 08, 2022
This repository for project that can Automate Number Plate Recognition (ANPR) in Morocco Licensed Vehicles. 💻 + 🚙 + 🇲🇦 = 🤖 🕵🏻‍♂️

MoroccoAI Data Challenge (Edition #001) This Reposotory is result of our work in the comepetiton organized by MoroccoAI in the context of the first Mo

SAFOINE EL KHABICH 14 Oct 31, 2022
Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D)

Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D) Code & Data Appendix for Conjugated Discrete Distributions for Distr

1 Jan 11, 2022
Predict and time series avocado hass

RECOMMENDER SYSTEM MARKETING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU 1. Giới thiệu - Tiki là một hệ sinh thái thương mại "all in one", trong đó có tiki.vn, là

hieulmsc 3 Jan 10, 2022
Determined: Deep Learning Training Platform

Determined: Deep Learning Training Platform Determined is an open-source deep learning training platform that makes building models fast and easy. Det

Determined AI 2k Dec 31, 2022
Training, generation, and analysis code for Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics

Location-Aware Generative Adversarial Networks (LAGAN) for Physics Synthesis This repository contains all the code used in L. de Oliveira (@lukedeo),

Deep Learning for HEP 57 Oct 22, 2022
Code for "Primitive Representation Learning for Scene Text Recognition" (CVPR 2021)

Primitive Representation Learning Network (PREN) This repository contains the code for our paper accepted by CVPR 2021 Primitive Representation Learni

Ruijie Yan 76 Jan 02, 2023
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
C3D is a modified version of BVLC caffe to support 3D ConvNets.

C3D C3D is a modified version of BVLC caffe to support 3D convolution and pooling. The main supporting features include: Training or fine-tuning 3D Co

Meta Archive 1.1k Nov 14, 2022
Losslandscapetaxonomy - Taxonomizing local versus global structure in neural network loss landscapes

Taxonomizing local versus global structure in neural network loss landscapes Int

Yaoqing Yang 8 Dec 30, 2022
Learning Modified Indicator Functions for Surface Reconstruction

Learning Modified Indicator Functions for Surface Reconstruction In this work, we propose a learning-based approach for implicit surface reconstructio

4 Apr 18, 2022
An Implementation of Fully Convolutional Networks in Tensorflow.

Update An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository. tensorflo

Marvin Teichmann 1.1k Dec 12, 2022
Tutorial materials for Part of NSU Intro to Deep Learning with PyTorch.

Intro to Deep Learning Materials are part of North South University (NSU) Intro to Deep Learning with PyTorch workshop series. (Slides) Related materi

Hasib Zunair 9 Jun 08, 2022