This is an official implementation for "AS-MLP: An Axial Shifted MLP Architecture for Vision".

Related tags

Deep LearningAS-MLP
Overview

AS-MLP architecture for Image Classification

Model Zoo

Image Classification on ImageNet-1K

Network Resolution Top-1 (%) Params FLOPs Throughput (image/s) model
AS-MLP-T 224x224 81.3 28M 4.4G 1047 onedrive
AS-MLP-S 224x224 83.1 50M 8.5G 619 onedrive
AS-MLP-B 224x224 83.3 88M 15.2G 455 onedrive

Usage

Install

  • Clone this repo:
git clone https://github.com/svip-lab/AS-MLP
cd AS-MLP
  • Create a conda virtual environment and activate it:
conda create -n asmlp python=3.7 -y
conda activate asmlp
conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.1 -c pytorch
  • Install timm==0.3.2:
pip install timm==0.3.2
  • Install cupy-cuda101:
pip install cupy-cuda101
  • Install Apex:
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
  • Install other requirements:
pip install opencv-python==4.4.0.46 termcolor==1.1.0 yacs==0.1.8

Evaluation

To evaluate a pre-trained AS-MLP on ImageNet val, run:

bash train_scripts/test.sh

Training from scratch

To train a AS-MLP on ImageNet from scratch, run:

bash train_scripts/train.sh

You can easily reproduce our results. Enjoy!

Throughput

To measure the throughput, run:

bash train_scripts/get_throughput.sh

Citation

If this project is helpful for you, you can cite our paper:

@article{Lian_2021_ASMLP,
  author = {Lian, Dongze and Yu, Zehao and Sun, Xing and Gao, Shenghua},
  title = {AS-MLP: An Axial Shifted MLP Architecture for Vision},
  journal={arXiv preprint arXiv:2107.08391},
  year = {2021}
}

Acknowledgement

The code is built upon Swin-Transformer

Owner
SVIP Lab
ShanghaiTech Vision and Intelligent Perception Lab
SVIP Lab
Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training"

Saliency Guided Training Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training" by Aya Abdelsalam Ismail, Hector Cor

8 Sep 22, 2022
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models

GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Model This repository is the official PyTorch implementation of GraphRNN, a graph gene

Jiaxuan 568 Dec 29, 2022
Official implementation of our paper "Learning to Bootstrap for Combating Label Noise"

Learning to Bootstrap for Combating Label Noise This repo is the official implementation of our paper "Learning to Bootstrap for Combating Label Noise

21 Apr 09, 2022
Official Pytorch Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images.

IAug_CDNet Official Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images. Overview We propose a

53 Dec 02, 2022
Explainability for Vision Transformers (in PyTorch)

Explainability for Vision Transformers (in PyTorch) This repository implements methods for explainability in Vision Transformers

Jacob Gildenblat 442 Jan 04, 2023
Facestar dataset. High quality audio-visual recordings of human conversational speech.

Facestar Dataset Description Existing audio-visual datasets for human speech are either captured in a clean, controlled environment but contain only a

Meta Research 87 Dec 21, 2022
MPRNet-Cloud-removal: Progressive cloud removal

MPRNet-Cloud-removal Progressive cloud removal Requirements 1.Pytorch = 1.0 2.Python 3 3.NVIDIA GPU + CUDA 9.0 4.Tensorboard Installation 1.Clone the

Semi 95 Dec 18, 2022
Power Core Simulator!

Power Core Simulator Power Core Simulator is a simulator based off the Roblox game "Pinewood Builders Computer Core". In this simulator, you can choos

BananaJeans 1 Nov 13, 2021
Utility code for use with PyXLL

pyxll-utils There is no need to use this package as of PyXLL 5. All features from this package are now provided by PyXLL. If you were using this packa

PyXLL 10 Dec 18, 2021
A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis

WaveGlow A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis Quick Start: Install requirements: pip install

Yuchao Zhang 204 Jul 14, 2022
Language models are open knowledge graphs ( non official implementation )

language-models-are-knowledge-graphs-pytorch Language models are open knowledge graphs ( work in progress ) A non official reimplementation of Languag

theblackcat102 132 Dec 18, 2022
JAX bindings to the Flatiron Institute Non-uniform Fast Fourier Transform (FINUFFT) library

JAX bindings to FINUFFT This package provides a JAX interface to (a subset of) the Flatiron Institute Non-uniform Fast Fourier Transform (FINUFFT) lib

Dan Foreman-Mackey 32 Oct 15, 2022
A framework for joint super-resolution and image synthesis, without requiring real training data

SynthSR This repository contains code to train a Convolutional Neural Network (CNN) for Super-resolution (SR), or joint SR and data synthesis. The met

83 Jan 01, 2023
Robot Reinforcement Learning on the Constraint Manifold

Implementation of "Robot Reinforcement Learning on the Constraint Manifold"

31 Dec 05, 2022
This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild with Dense 3D Representations and A Benchmark. (CVPR 2022)"

Gait3D-Benchmark This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild

82 Jan 04, 2023
This repository contains the source code and data for reproducing results of Deep Continuous Clustering paper

Deep Continuous Clustering Introduction This is a Pytorch implementation of the DCC algorithms presented in the following paper (paper): Sohil Atul Sh

Sohil Shah 197 Nov 29, 2022
A high performance implementation of HDBSCAN clustering.

HDBSCAN HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates

2.3k Jan 02, 2023
An implementation of the WHATWG URL Standard in JavaScript

whatwg-url whatwg-url is a full implementation of the WHATWG URL Standard. It can be used standalone, but it also exposes a lot of the internal algori

314 Dec 28, 2022
A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image.

Minimal Body A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image. The model file is only 51.2 MB and runs a

Yuxiao Zhou 49 Dec 05, 2022
Efficient Two-Step Networks for Temporal Action Segmentation (Neurocomputing 2021)

Efficient Two-Step Networks for Temporal Action Segmentation This repository provides a PyTorch implementation of the paper Efficient Two-Step Network

8 Apr 16, 2022