atmaCup #11 の Public 4th / Pricvate 5th Solution のリポジトリです。

Overview

#11 atmaCup

目次

解法概要

詳細は discussion で公開しています [link]

3行まとめ:

  • SimSiam による事前学習
  • Classication / Regression それぞれのタスクで Fine-tuning
  • 後処理を行った上で Weight Optimization

ディレクトリ構成

.
├── input
│     └── atmaCup-11       # コンペデータを置く場所
├── output                 # 学習結果の出力先
└── src                    # preprocess, training, inference 等の code

./src 下の構成についてはその他補足に記載。

実行手順

以下ではスクリプトの実行を ./src ディレクトリで行ってください。

環境

GPU

  • TitanRTX(主にSimSiam と重い model の学習に使用)
  • GTX1080Ti(主に軽い model の学習と推論に使用)

batch size を落とす・Gradient Accumulation を使用する 等を行えば VRAM 容量が小さめの GPU でも動かせると思います。

Python & cuda

  • Python 3.8.6
  • CUDA 10.2 (CUDA driver 440.33.01)

主要なライブラリ

  • 抜け漏れがあるかもしれないです
  • 古すぎるとかでなければ Version が一致しなくても動くと思います
Name Version
albumentations 1.0.0
joblib 1.0.1
lightly 1.1.16
matplotlib 3.4.2
numpy 1.20.3
opencv-python 4.5.2.54
optuna 2.8.0
pandas 1.2.4
pytorch-pfn-extras 0.4.1
PyYAML 5.4.1
scikit-learn 0.24.2
scipy 1.6.3
timm 0.4.12
torch 1.9.0
torchvision 0.10.0
tqdm 4.61.0

準備

コンペティションデータの格納

コンペティションのページからダウンロードして ./input/atmaCup-11 に解凍、photos.zip もその場で解凍してください。
以下のような構成になることを想定しています。

.
├── input
│     └── atmaCup-11
│             ├── photos
│             ├── atmaCup#11_sample_submission.csv
│             ├── materials.csv
│             ├── techniques.csv
│             ├── test.csv
│             └── train.csv
.
.

前処理

以下を実行。

$ python preprocess.py

各画像のサイズ等が格納された img_info.csv 、データセット全体の(概算の)channel ごとの統計値が計算された stats_by_data.csvtrain.csv に Cross Validation のための分割(fold 列)が追加された train_sgkf-5fold.csv./input/atmaCup-11 下に生成されます。

学習

事前学習

まず ResNet18-D, ResNet34-D, ResNet50-D, Fast-ResNeSt50-D_1s4x24d の 4モデルについて SimSiam による事前学習を行います。 GPU に乗らない場合は gradient accumulation の使用を検討してください。

$ python train_simsiam.py -cfg exp_config/000.yml  # resnet18d
$ python train_simsiam.py -cfg exp_config/001.yml  # resnet34d
$ python train_simsiam.py -cfg exp_config/002.yml  # resnet50d
$ python train_simsiam.py -cfg exp_config/003.yml  # resnest50d_1s4x24d

Fine-tuning

自動で 5fold の training を実行。Regression / Classification の各タスクで行うので計8種のモデルが出来ます。 前述の SimSiam の学習結果が以下のように ./output下に出力されており、これらを読み込んで使います。

config file 内で ResNet18-D, ResNet34-D は 150 epoch, ResNet50-D, Fast-ResNeSt50-D_1s4x24d は 200 epoch 時点の事前学習モデルを使用するようにしてあります。(ただ gradient accumulation を使用すると少し挙動が変わるようなので、SimSiam での loss と std を確認して必要に応じて変更して下さい。)

.
├── output
│     ├── 000_resnet18d_simsiam
│     ├── 001_resnet34d_simsiam
│     ├── 002_resnet50d_simsiam
│     └── 003_resnest50d_1s4x24d_simsiam
.
.
Classification
$ python train.py -cfg exp_config/100.yml  # resnet18d
$ python train.py -cfg exp_config/101.yml  # resnet34d
$ python train.py -cfg exp_config/102.yml  # resnet50d
$ python train.py -cfg exp_config/103.yml  # resnest50d_1s4x24d
Regression
$ python train.py -cfg exp_config/200.yml  # resnet18d
$ python train.py -cfg exp_config/201.yml  # resnet34d
$ python train.py -cfg exp_config/202.yml  # resnet50d
$ python train.py -cfg exp_config/203.yml  # resnest50d_1s4x24d

推論

学習が完了していると ./output 下に各学習結果のディレクトリが生成されているはずです。これらを読み込んで使用します。

.
├── output
│     ├── 100_resnet18d_cls
│     ├── 101_resnet34d_cls
│     ├── 102_resnet50d_cls
│     ├── 103_resnest50d_1s4x24d_cls
│     ├── 200_resnet18d_reg
│     ├── 201_resnet34d_reg
│     ├── 202_resnet50d_reg
│     └── 203_resnest50d_1s4x24d_reg
.
.

モデルごと

各学習結果のディレクトリを指定する形で実行します。

!!注意!!:同じディレクトリ内に metric(今回は RMSE) での各 fold での best model が copy され、学習過程のチェックポイントは全て削除されます。

同じディレクトリ内に各 fold での best model での予測結果、5-fold averaging 、oof prediction ( + classification の場合は logit の状態のもの)、各 fold での CV の結果の csv が出力されます。logit 以外は後処理を実施した上での予測結果です。

Classification
$ python infer.py -e ../output/100_resnet18d_cls
$ python infer.py -e ../output/101_resnet34d_cls
$ python infer.py -e ../output/102_resnet50d_cls
$ python infer.py -e ../output/103_resnet50d_1s4x24d_cls
Regression
$ python infer.py -e ../output/200_resnet18d_reg
$ python infer.py -e ../output/201_resnet34d_reg
$ python infer.py -e ../output/202_resnet50d_reg
$ python infer.py -e ../output/203_resnet50d_1s4x24d_reg

アンサンブル

以下を実行してください。

$ python ensemble.py -cfg exp_config/900.yml

Classification/Regression モデルのみでの averaging 、全モデル(8 model)での averaging 、oputuna で weight optimization を行った結果、が出力されます。

その他補足

./src の構成について

少し補足しておくと、./src 下のディレクトリ・ファイルの中身はざっとこんな感じです。

.
├── src
│     ├── base_data         # コンペ問わず使いまわす dataset 等
│     ├── base_model        # コンペ問わず使いまわす model 等
│     ├── base_optimizer    # コンペ問わず使いまわす optimizer 等
│     ├── base_pfn_extras   # コンペ問わず使いまわす pfn-extras 関連
│     ├── utils             # その他の使いまわすコード
│     ├── data.py           # コンペ特有の dataset 等を作ったら書く
│     ├── model.py          # コンペ特有の model 等を作ったら書く
│     ├── global_config.py  # (コンペ特有の)全体的な設定などを記述
│     ├── preprocess.py     # コンペ特有の前処理
│     ├── train_simsiam.py  # SimSiam の学習
│     ├── train.py          # Fine-tuning の学習
│     ├── infer.py          # 推論
│     └── ensemble.py       # アンサンブル
.
.

base_XXXutils は固定で、コンペで都度都度必要になったものは model.pydata.py 等に新しく追加します。コンペ終了後「また使いそうだな」というものは base_XXX に統合する運用です(例えば今回なら SimSiam のために書いた Dataset を終了後に統合しました)。 一応再現性を保つという名目で model.pydata.pyglobal_config.pytrain[_simsiam].py は学習ごとに結果の出力先へコピーを取るようにしています。

train.py は基本使いまわしでコンペごとに一部(主にデータの読み込みの部分)を書き換えて使いますが、infer.py(, ensemble.py)は、指標等のせいで書き換える部分が多くなる場合がほとんどです(今回なら後処理の部分など)。

またこれは pytorch-pfn-extras のしかも Config System を使っている人にしか伝わらない話ですが、config_types の辞書は一旦各 base_XXX__init__.py に作って置き、それらを global_config.py 内で読み込んで一つの辞書(CONFIG_TYPES)に統合しています。data.pymodel.py で新しく作ったものについても global_config.py 内で追加します。

結果の再現性について

乱数等は固定するとともに torch.backends.cudnn.deterministic を True にしていますが、基本的に速度を優先して torch.backends.cudnn.benchmark を True にしているので実行ごとに結果が変わります(詳細:Reproducibility — PyTorch 1.9.0 documentation)。

完全に再現性を取りたい場合は torch.backends.cudnn.benchmark を False にすれば(多分)行けるはずです。

出力等について

  • このリポジトリは terminal での実行を前提としていますが、notebook に移植する場合は pfn-extras が出してくれるプログレスバーの表示がうまくいきません。もし移植するのであれば各 config yaml ファイルにある ProgressBar をコメントアウトし、train.py の 139行目にある Evaluator の引数 progress_bar を False にしてください。

  • 学習の出力結果を一切上げていないので何が出てくるか補足しておくと、学習ログの json ファイル、指定したタイミングでの model の snapshot、loss・metric・lr を可視化した png ファイルです。ここらへんの設定は config yaml ファイル の extensions で指定しています。

pytorch-pfn-extras使いでない方へ

特に Config System を使用しているせいで面食らう部分もあるかと思いますが、train[_simsiam].py を読んでいただけると流れ自体は basic な training loop とほぼ同じだとわかると思います(mixup とか gradient accumulation を入れたことでちょっとごちゃついてますが)。 manager と extensions の枠組みを使うことで素の training loop にあまり影響せずに前述の出力が出来るのが pytorch-pfn-extras の一番好きな所なので、興味がある方は是非使ってみてください!

Owner
Tawara
Research & Development Engineer, Kaggle 4x Master.
Tawara
Run Keras models in the browser, with GPU support using WebGL

**This project is no longer active. Please check out TensorFlow.js.** The Keras.js demos still work but is no longer updated. Run Keras models in the

Leon Chen 4.9k Dec 29, 2022
On Out-of-distribution Detection with Energy-based Models

On Out-of-distribution Detection with Energy-based Models This repository contains the code for the experiments conducted in the paper On Out-of-distr

Sven 19 Aug 07, 2022
A standard framework for modelling Deep Learning Models for tabular data

PyTorch Tabular aims to make Deep Learning with Tabular data easy and accessible to real-world cases and research alike.

801 Jan 08, 2023
Multi-layer convolutional LSTM with Pytorch

Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an

Zijie Zhuang 733 Dec 30, 2022
An official implementation of MobileStyleGAN in PyTorch

MobileStyleGAN: A Lightweight Convolutional Neural Network for High-Fidelity Image Synthesis Official PyTorch Implementation The accompanying videos c

Sergei Belousov 602 Jan 07, 2023
Probabilistic Cross-Modal Embedding (PCME) CVPR 2021

Probabilistic Cross-Modal Embedding (PCME) CVPR 2021 Official Pytorch implementation of PCME | Paper Sanghyuk Chun1 Seong Joon Oh1 Rafael Sampaio de R

NAVER AI 87 Dec 21, 2022
Fully convolutional networks for semantic segmentation

FCN-semantic-segmentation Simple end-to-end semantic segmentation using fully convolutional networks [1]. Takes a pretrained 34-layer ResNet [2], remo

Kai Arulkumaran 186 Dec 25, 2022
[ICCV 2021] Focal Frequency Loss for Image Reconstruction and Synthesis

Focal Frequency Loss - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Focal Fre

Liming Jiang 460 Jan 04, 2023
Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

HamasKhan 3 Jul 08, 2022
An implementation of MobileFormer

MobileFormer An implementation of MobileFormer proposed by Yinpeng Chen, Xiyang Dai et al. Including [1] Mobile-Former proposed in:

slwang9353 62 Dec 28, 2022
NAS-FCOS: Fast Neural Architecture Search for Object Detection (CVPR 2020)

NAS-FCOS: Fast Neural Architecture Search for Object Detection This project hosts the train and inference code with pretrained model for implementing

Ning Wang 180 Dec 06, 2022
🛠️ Tools for Transformers compression using Lightning ⚡

Bert-squeeze is a repository aiming to provide code to reduce the size of Transformer-based models or decrease their latency at inference time.

Jules Belveze 66 Dec 11, 2022
Unofficial implementation of Perceiver IO: A General Architecture for Structured Inputs & Outputs

Perceiver IO Unofficial implementation of Perceiver IO: A General Architecture for Structured Inputs & Outputs Usage import torch from src.perceiver.

Timur Ganiev 111 Nov 15, 2022
Aiming at the common training datsets split, spectrum preprocessing, wavelength select and calibration models algorithm involved in the spectral analysis process

Aiming at the common training datsets split, spectrum preprocessing, wavelength select and calibration models algorithm involved in the spectral analysis process, a complete algorithm library is esta

Fu Pengyou 50 Jan 07, 2023
Meandering In Networks of Entities to Reach Verisimilar Answers

MINERVA Meandering In Networks of Entities to Reach Verisimilar Answers Code and models for the paper Go for a Walk and Arrive at the Answer - Reasoni

Shehzaad Dhuliawala 271 Dec 13, 2022
Picasso: A CUDA-based Library for Deep Learning over 3D Meshes

The Picasso Library is intended for complex real-world applications with large-scale surfaces, while it also performs impressively on the small-scale applications over synthetic shape manifolds. We h

97 Dec 01, 2022
Contour-guided image completion with perceptual grouping (BMVC 2021 publication)

Contour-guided Image Completion with Perceptual Grouping Authors Morteza Rezanejad*, Sidharth Gupta*, Chandra Gummaluru, Ryan Marten, John Wilder, Mic

Sid Gupta 6 Dec 27, 2022
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
Scales, Chords, and Cadences: Practical Music Theory for MIR Researchers

ISMIR-musicTheoryTutorial This repository has slides and Jupyter notebooks for the ISMIR 2021 tutorial Scales, Chords, and Cadences: Practical Music T

Johanna Devaney 58 Oct 11, 2022
The source code for the Cutoff data augmentation approach proposed in this paper: "A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation".

Cutoff: A Simple Data Augmentation Approach for Natural Language This repository contains source code necessary to reproduce the results presented in

Dinghan Shen 49 Dec 22, 2022