atmaCup #11 の Public 4th / Pricvate 5th Solution のリポジトリです。

Overview

#11 atmaCup

目次

解法概要

詳細は discussion で公開しています [link]

3行まとめ:

  • SimSiam による事前学習
  • Classication / Regression それぞれのタスクで Fine-tuning
  • 後処理を行った上で Weight Optimization

ディレクトリ構成

.
├── input
│     └── atmaCup-11       # コンペデータを置く場所
├── output                 # 学習結果の出力先
└── src                    # preprocess, training, inference 等の code

./src 下の構成についてはその他補足に記載。

実行手順

以下ではスクリプトの実行を ./src ディレクトリで行ってください。

環境

GPU

  • TitanRTX(主にSimSiam と重い model の学習に使用)
  • GTX1080Ti(主に軽い model の学習と推論に使用)

batch size を落とす・Gradient Accumulation を使用する 等を行えば VRAM 容量が小さめの GPU でも動かせると思います。

Python & cuda

  • Python 3.8.6
  • CUDA 10.2 (CUDA driver 440.33.01)

主要なライブラリ

  • 抜け漏れがあるかもしれないです
  • 古すぎるとかでなければ Version が一致しなくても動くと思います
Name Version
albumentations 1.0.0
joblib 1.0.1
lightly 1.1.16
matplotlib 3.4.2
numpy 1.20.3
opencv-python 4.5.2.54
optuna 2.8.0
pandas 1.2.4
pytorch-pfn-extras 0.4.1
PyYAML 5.4.1
scikit-learn 0.24.2
scipy 1.6.3
timm 0.4.12
torch 1.9.0
torchvision 0.10.0
tqdm 4.61.0

準備

コンペティションデータの格納

コンペティションのページからダウンロードして ./input/atmaCup-11 に解凍、photos.zip もその場で解凍してください。
以下のような構成になることを想定しています。

.
├── input
│     └── atmaCup-11
│             ├── photos
│             ├── atmaCup#11_sample_submission.csv
│             ├── materials.csv
│             ├── techniques.csv
│             ├── test.csv
│             └── train.csv
.
.

前処理

以下を実行。

$ python preprocess.py

各画像のサイズ等が格納された img_info.csv 、データセット全体の(概算の)channel ごとの統計値が計算された stats_by_data.csvtrain.csv に Cross Validation のための分割(fold 列)が追加された train_sgkf-5fold.csv./input/atmaCup-11 下に生成されます。

学習

事前学習

まず ResNet18-D, ResNet34-D, ResNet50-D, Fast-ResNeSt50-D_1s4x24d の 4モデルについて SimSiam による事前学習を行います。 GPU に乗らない場合は gradient accumulation の使用を検討してください。

$ python train_simsiam.py -cfg exp_config/000.yml  # resnet18d
$ python train_simsiam.py -cfg exp_config/001.yml  # resnet34d
$ python train_simsiam.py -cfg exp_config/002.yml  # resnet50d
$ python train_simsiam.py -cfg exp_config/003.yml  # resnest50d_1s4x24d

Fine-tuning

自動で 5fold の training を実行。Regression / Classification の各タスクで行うので計8種のモデルが出来ます。 前述の SimSiam の学習結果が以下のように ./output下に出力されており、これらを読み込んで使います。

config file 内で ResNet18-D, ResNet34-D は 150 epoch, ResNet50-D, Fast-ResNeSt50-D_1s4x24d は 200 epoch 時点の事前学習モデルを使用するようにしてあります。(ただ gradient accumulation を使用すると少し挙動が変わるようなので、SimSiam での loss と std を確認して必要に応じて変更して下さい。)

.
├── output
│     ├── 000_resnet18d_simsiam
│     ├── 001_resnet34d_simsiam
│     ├── 002_resnet50d_simsiam
│     └── 003_resnest50d_1s4x24d_simsiam
.
.
Classification
$ python train.py -cfg exp_config/100.yml  # resnet18d
$ python train.py -cfg exp_config/101.yml  # resnet34d
$ python train.py -cfg exp_config/102.yml  # resnet50d
$ python train.py -cfg exp_config/103.yml  # resnest50d_1s4x24d
Regression
$ python train.py -cfg exp_config/200.yml  # resnet18d
$ python train.py -cfg exp_config/201.yml  # resnet34d
$ python train.py -cfg exp_config/202.yml  # resnet50d
$ python train.py -cfg exp_config/203.yml  # resnest50d_1s4x24d

推論

学習が完了していると ./output 下に各学習結果のディレクトリが生成されているはずです。これらを読み込んで使用します。

.
├── output
│     ├── 100_resnet18d_cls
│     ├── 101_resnet34d_cls
│     ├── 102_resnet50d_cls
│     ├── 103_resnest50d_1s4x24d_cls
│     ├── 200_resnet18d_reg
│     ├── 201_resnet34d_reg
│     ├── 202_resnet50d_reg
│     └── 203_resnest50d_1s4x24d_reg
.
.

モデルごと

各学習結果のディレクトリを指定する形で実行します。

!!注意!!:同じディレクトリ内に metric(今回は RMSE) での各 fold での best model が copy され、学習過程のチェックポイントは全て削除されます。

同じディレクトリ内に各 fold での best model での予測結果、5-fold averaging 、oof prediction ( + classification の場合は logit の状態のもの)、各 fold での CV の結果の csv が出力されます。logit 以外は後処理を実施した上での予測結果です。

Classification
$ python infer.py -e ../output/100_resnet18d_cls
$ python infer.py -e ../output/101_resnet34d_cls
$ python infer.py -e ../output/102_resnet50d_cls
$ python infer.py -e ../output/103_resnet50d_1s4x24d_cls
Regression
$ python infer.py -e ../output/200_resnet18d_reg
$ python infer.py -e ../output/201_resnet34d_reg
$ python infer.py -e ../output/202_resnet50d_reg
$ python infer.py -e ../output/203_resnet50d_1s4x24d_reg

アンサンブル

以下を実行してください。

$ python ensemble.py -cfg exp_config/900.yml

Classification/Regression モデルのみでの averaging 、全モデル(8 model)での averaging 、oputuna で weight optimization を行った結果、が出力されます。

その他補足

./src の構成について

少し補足しておくと、./src 下のディレクトリ・ファイルの中身はざっとこんな感じです。

.
├── src
│     ├── base_data         # コンペ問わず使いまわす dataset 等
│     ├── base_model        # コンペ問わず使いまわす model 等
│     ├── base_optimizer    # コンペ問わず使いまわす optimizer 等
│     ├── base_pfn_extras   # コンペ問わず使いまわす pfn-extras 関連
│     ├── utils             # その他の使いまわすコード
│     ├── data.py           # コンペ特有の dataset 等を作ったら書く
│     ├── model.py          # コンペ特有の model 等を作ったら書く
│     ├── global_config.py  # (コンペ特有の)全体的な設定などを記述
│     ├── preprocess.py     # コンペ特有の前処理
│     ├── train_simsiam.py  # SimSiam の学習
│     ├── train.py          # Fine-tuning の学習
│     ├── infer.py          # 推論
│     └── ensemble.py       # アンサンブル
.
.

base_XXXutils は固定で、コンペで都度都度必要になったものは model.pydata.py 等に新しく追加します。コンペ終了後「また使いそうだな」というものは base_XXX に統合する運用です(例えば今回なら SimSiam のために書いた Dataset を終了後に統合しました)。 一応再現性を保つという名目で model.pydata.pyglobal_config.pytrain[_simsiam].py は学習ごとに結果の出力先へコピーを取るようにしています。

train.py は基本使いまわしでコンペごとに一部(主にデータの読み込みの部分)を書き換えて使いますが、infer.py(, ensemble.py)は、指標等のせいで書き換える部分が多くなる場合がほとんどです(今回なら後処理の部分など)。

またこれは pytorch-pfn-extras のしかも Config System を使っている人にしか伝わらない話ですが、config_types の辞書は一旦各 base_XXX__init__.py に作って置き、それらを global_config.py 内で読み込んで一つの辞書(CONFIG_TYPES)に統合しています。data.pymodel.py で新しく作ったものについても global_config.py 内で追加します。

結果の再現性について

乱数等は固定するとともに torch.backends.cudnn.deterministic を True にしていますが、基本的に速度を優先して torch.backends.cudnn.benchmark を True にしているので実行ごとに結果が変わります(詳細:Reproducibility — PyTorch 1.9.0 documentation)。

完全に再現性を取りたい場合は torch.backends.cudnn.benchmark を False にすれば(多分)行けるはずです。

出力等について

  • このリポジトリは terminal での実行を前提としていますが、notebook に移植する場合は pfn-extras が出してくれるプログレスバーの表示がうまくいきません。もし移植するのであれば各 config yaml ファイルにある ProgressBar をコメントアウトし、train.py の 139行目にある Evaluator の引数 progress_bar を False にしてください。

  • 学習の出力結果を一切上げていないので何が出てくるか補足しておくと、学習ログの json ファイル、指定したタイミングでの model の snapshot、loss・metric・lr を可視化した png ファイルです。ここらへんの設定は config yaml ファイル の extensions で指定しています。

pytorch-pfn-extras使いでない方へ

特に Config System を使用しているせいで面食らう部分もあるかと思いますが、train[_simsiam].py を読んでいただけると流れ自体は basic な training loop とほぼ同じだとわかると思います(mixup とか gradient accumulation を入れたことでちょっとごちゃついてますが)。 manager と extensions の枠組みを使うことで素の training loop にあまり影響せずに前述の出力が出来るのが pytorch-pfn-extras の一番好きな所なので、興味がある方は是非使ってみてください!

Owner
Tawara
Research & Development Engineer, Kaggle 4x Master.
Tawara
Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation

OoD_Gen-Chest_Xray Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation Requirements (Installations) Install the following libra

Enoch Tetteh 2 Oct 01, 2022
My Body is a Cage: the Role of Morphology in Graph-Based Incompatible Control

My Body is a Cage: the Role of Morphology in Graph-Based Incompatible Control

yobi byte 29 Oct 09, 2022
Unofficial implementation of Pix2SEQ

Unofficial-Pix2seq: A Language Modeling Framework for Object Detection Unofficial implementation of Pix2SEQ. Please use this code with causion. Many i

159 Dec 12, 2022
Code for "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" @ICRA2021

CloudAAE This is an tensorflow implementation of "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" Files log:

Gee 35 Nov 14, 2022
Yas CRNN model training - Yet Another Genshin Impact Scanner

Yas-Train Yet Another Genshin Impact Scanner 又一个原神圣遗物导出器 介绍 该仓库为 Yas 的模型训练程序 相关资料 MobileNetV3 CRNN 使用 假设你会设置基本的pytorch环境。 生成数据集 python main.py gen 训练

wormtql 18 Jan 08, 2023
Python Blood Vessel Topology Analysis

Python Blood Vessel Topology Analysis This repository is not being updated anymore. The new version of PyVesTo is called PyVaNe and is available at ht

6 Nov 15, 2022
This is the pytorch code for the paper Curious Representation Learning for Embodied Intelligence.

Curious Representation Learning for Embodied Intelligence This is the pytorch code for the paper Curious Representation Learning for Embodied Intellig

19 Oct 19, 2022
Code for the paper "Controllable Video Captioning with an Exemplar Sentence"

SMCG Code for the paper "Controllable Video Captioning with an Exemplar Sentence" Introduction We investigate a novel and challenging task, namely con

10 Dec 04, 2022
The Power of Scale for Parameter-Efficient Prompt Tuning

The Power of Scale for Parameter-Efficient Prompt Tuning Implementation of soft embeddings from https://arxiv.org/abs/2104.08691v1 using Pytorch and H

Kip Parker 208 Dec 30, 2022
This repo contains the code and data used in the paper "Wizard of Search Engine: Access to Information Through Conversations with Search Engines"

Wizard of Search Engine: Access to Information Through Conversations with Search Engines by Pengjie Ren, Zhongkun Liu, Xiaomeng Song, Hongtao Tian, Zh

19 Oct 27, 2022
This is the pytorch implementation for the paper: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation, which is accepted to ICCV2021.

GMPQ: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation This is the pytorch implementation for the paper: Generalizable Mix

18 Sep 02, 2022
Outlier Exposure with Confidence Control for Out-of-Distribution Detection

OOD-detection-using-OECC This repository contains the essential code for the paper Outlier Exposure with Confidence Control for Out-of-Distribution De

Nazim Shaikh 64 Nov 02, 2022
Barbershop: GAN-based Image Compositing using Segmentation Masks (SIGGRAPH Asia 2021)

Barbershop: GAN-based Image Compositing using Segmentation Masks Barbershop: GAN-based Image Compositing using Segmentation Masks Peihao Zhu, Rameen A

Peihao Zhu 928 Dec 30, 2022
Blender Add-On for slicing meshes with planes

MeshSlicer Blender Add-On for slicing meshes with multiple overlapping planes at once. This is a simple Blender addon to slice a silmple mesh with mul

52 Dec 12, 2022
This is the workbook I created while I was studying for the Qiskit Associate Developer exam. I hope this becomes useful to others as it was for me :)

A Workbook for the Qiskit Developer Certification Exam Hello everyone! This is Bartu, a fellow Qiskitter. I have recently taken the Certification exam

Bartu Bisgin 66 Dec 10, 2022
Commonsense Ability Tests

CATS Commonsense Ability Tests Dataset and script for paper Evaluating Commonsense in Pre-trained Language Models Use making_sense.py to run the exper

XUHUI ZHOU 28 Oct 19, 2022
Catbird is an open source paraphrase generation toolkit based on PyTorch.

Catbird is an open source paraphrase generation toolkit based on PyTorch. Quick Start Requirements and Installation The project is based on PyTorch 1.

Afonso Salgado de Sousa 5 Dec 15, 2022
MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity

MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity Introduction The 3D LiDAR place recognition aim

16 Dec 08, 2022
PyTorch implementation for the ICLR 2020 paper "Understanding the Limitations of Variational Mutual Information Estimators"

Smoothed Mutual Information ``Lower Bound'' Estimator PyTorch implementation for the ICLR 2020 paper Understanding the Limitations of Variational Mutu

50 Nov 09, 2022
A trashy useless Latin programming language written in python.

Codigum! The first programming langage in latin! (please keep your eyes closed when if you read the source code) It is pretty useless though. Document

Bic 2 Oct 25, 2021