Skoot is a lightweight python library of machine learning transformer classes that interact with scikit-learn and pandas.

Overview

codecov Supported versions Supported versions Supported versions CircleCI Build Status

skoot

Skoot is a lightweight python library of machine learning transformer classes that interact with scikit-learn and pandas. Its objective is to expedite data munging and pre-processing tasks that can tend to take up so much of data science practitioners' time. See the documentation for more info.

Note that skoot is the preferred alternative to the now deprecated skutil library

Two minutes to model-readiness

Real world data is nasty. Most data scientists spend the majority of their time tackling data cleansing tasks. With skoot, we can automate away so much of the bespoke hacking solutions that consume data scientists' time.

In this example, we'll examine a common dataset (the adult dataset from the UCI machine learning repo) that requires significant pre-processing.

from skoot.datasets import load_adult_df
from skoot.feature_selection import FeatureFilter
from skoot.decomposition import SelectivePCA
from skoot.preprocessing import DummyEncoder
from skoot.utils.dataframe import get_numeric_columns
from skoot.utils.dataframe import get_categorical_columns
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score

# load the dataset with the skoot-native loader & split it
adult = load_adult_df(tgt_name="target")
y = adult.pop("target")
X_train, X_test, y_train, y_test = train_test_split(
    adult, y, random_state=42, test_size=0.2)
    
# get numeric and categorical feature names
num_cols = get_numeric_columns(X_train).columns
obj_cols = get_categorical_columns(X_train).columns

# remove the education-num from the num_cols since we're going to remove it
num_cols = num_cols[~(num_cols == "education-num")]
    
# build a pipeline
pipe = Pipeline([
    # drop out the ordinal level that's otherwise equal to "education"
    ("dropper", FeatureFilter(cols=["education-num"])),
    
    # decompose the numeric features with PCA
    ("pca", SelectivePCA(cols=num_cols)),
    
    # dummy encode the categorical features
    ("dummy", DummyEncoder(cols=obj_cols, handle_unknown="ignore")),
    
    # and a simple classifier class
    ("clf", RandomForestClassifier(n_estimators=100, random_state=42))
])

pipe.fit(X_train, y_train)

# produce predictions
preds = pipe.predict(X_test)
print("Test accuracy: %.3f" % accuracy_score(y_test, preds))

For more tutorials, check out the documentation.

Comments
  • Windows: pip install not working

    Windows: pip install not working

    Hi, I can't install skoot neither via pip, nor anaconda.

    > pip install skoot
    Collecting skoot
      Could not find a version that satisfies the requirement skoot (from versions: )
    No matching distribution found for skoot
    

    Any ideas why that might be? Thank you!

    opened by r0f1 2
  • Bump django from 1.11 to 1.11.29 in /build_tools/doc

    Bump django from 1.11 to 1.11.29 in /build_tools/doc

    Bumps django from 1.11 to 1.11.29.

    Commits
    • f1e3017 [1.11.x] Bumped version for 1.11.29 release.
    • 02d97f3 [1.11.x] Fixed CVE-2020-9402 -- Properly escaped tolerance parameter in GIS f...
    • e643833 [1.11.x] Pinned PyYAML < 5.3 in test requirements.
    • d0e3eb8 [1.11.x] Added CVE-2020-7471 to security archive.
    • 9a62ed5 [1.11.x] Post-release version bump.
    • e09f09b [1.11.x] Bumped version for 1.11.28 release.
    • 001b063 [1.11.x] Fixed CVE-2020-7471 -- Properly escaped StringAgg(delimiter) parameter.
    • 7fd1ca3 [1.11.x] Fixed timezones tests for PyYAML 5.3+.
    • 121115d [1.11.x] Added CVE-2019-19844 to the security archive.
    • 2c4fb9a [1.11.x] Post-release version bump.
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 1
  • Bump django from 1.11 to 1.11.28 in /build_tools/doc

    Bump django from 1.11 to 1.11.28 in /build_tools/doc

    Bumps django from 1.11 to 1.11.28.

    Commits
    • e09f09b [1.11.x] Bumped version for 1.11.28 release.
    • 001b063 [1.11.x] Fixed CVE-2020-7471 -- Properly escaped StringAgg(delimiter) parameter.
    • 7fd1ca3 [1.11.x] Fixed timezones tests for PyYAML 5.3+.
    • 121115d [1.11.x] Added CVE-2019-19844 to the security archive.
    • 2c4fb9a [1.11.x] Post-release version bump.
    • 358973a [1.11.x] Bumped version for 1.11.27 release.
    • f4cff43 [1.11.x] Fixed CVE-2019-19844 -- Used verified user email for password reset ...
    • a235574 [1.11.x] Refs #31073 -- Added release notes for 02eff7ef60466da108b1a33f1e4dc...
    • e8fdf00 [1.11.x] Fixed #31073 -- Prevented CheckboxInput.get_context() from mutating ...
    • 4f15016 [1.11.x] Post-release version bump.
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 1
  • Bump django from 1.11 to 1.11.23 in /build_tools/doc

    Bump django from 1.11 to 1.11.23 in /build_tools/doc

    Bumps django from 1.11 to 1.11.23.

    Commits
    • 9748977 [1.11.x] Bumped version for 1.11.23 release.
    • 869b34e [1.11.x] Fixed CVE-2019-14235 -- Fixed potential memory exhaustion in django....
    • ed682a2 [1.11.x] Fixed CVE-2019-14234 -- Protected JSONField/HStoreField key and inde...
    • 52479ac [1.11.x] Fixed CVE-2019-14233 -- Prevented excessive HTMLParser recursion in ...
    • 42a66e9 [1.11.X] Fixed CVE-2019-14232 -- Adjusted regex to avoid backtracking issues ...
    • 693046e [1.11.x] Added stub release notes for security releases.
    • 6d054b5 [1.11.x] Added CVE-2019-12781 to the security release archive.
    • 7c849b9 [1.11.x] Post-release version bump.
    • 480380c [1.11.x] Bumped version for 1.11.22 release.
    • 32124fc [1.11.x] Fixed CVE-2019-12781 -- Made HttpRequest always trust SECURE_PROXY_S...
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot ignore this [patch|minor|major] version will close this PR and stop Dependabot creating any more for this minor/major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 1
  • Wrapped classes still reference sklearn user-guide

    Wrapped classes still reference sklearn user-guide

    The "See Also" section of wrapped sklearn estimators still references sklearn user_guide refs. We need to monkey patch "Selective" (or whatever prefix we are using) in front of them so they link in our documentation.

    bug 
    opened by tgsmith61591 1
  • Bump django from 1.11 to 2.2.24 in /build_tools/doc

    Bump django from 1.11 to 2.2.24 in /build_tools/doc

    Bumps django from 1.11 to 2.2.24.

    Commits
    • 2da029d [2.2.x] Bumped version for 2.2.24 release.
    • f27c38a [2.2.x] Fixed CVE-2021-33571 -- Prevented leading zeros in IPv4 addresses.
    • 053cc95 [2.2.x] Fixed CVE-2021-33203 -- Fixed potential path-traversal via admindocs'...
    • 6229d87 [2.2.x] Confirmed release date for Django 2.2.24.
    • f163ad5 [2.2.x] Added stub release notes and date for Django 2.2.24.
    • bed1755 [2.2.x] Changed IRC references to Libera.Chat.
    • 63f0d7a [2.2.x] Refs #32718 -- Fixed file_storage.test_generate_filename and model_fi...
    • 5fe4970 [2.2.x] Post-release version bump.
    • 61f814f [2.2.x] Bumped version for 2.2.23 release.
    • b8ecb06 [2.2.x] Fixed #32718 -- Relaxed file name validation in FileField.
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 0
  • scipy._lib_version not found when building package

    scipy._lib_version not found when building package

    problem: error saying scipy._lib_version is missing when building skoot

    cause: scipy._lib_version was removed in scipy 1.5.0 --> https://github.com/scipy/scipy/pull/11290 (downgrading to scipy 1.4.0 helps)

    Thanks!

    opened by AgroSimi 0
  • pip install Skoot on Mac keeps failing with ERROR: Could not find a version that satisfies the requirement skoot (from versions: none).

    pip install Skoot on Mac keeps failing with ERROR: Could not find a version that satisfies the requirement skoot (from versions: none).

    Description

    pip install Skoot on Mac keeps failing with ERROR: Could not find a version that satisfies the requirement skoot (from versions: none) ERROR: No matching distribution found for skoot

    Steps/Code to Reproduce

    pip install skoot using python version : Python 2.7.17 using pip version : pip 19.3.1

    Expected Results

    No errors thrown, successful installation of Skoot

    Actual Results

    ERROR: Could not find a version that satisfies the requirement skoot (from versions: none) ERROR: No matching distribution found for skoot

    Versions

    platform - Darwin-19.2.0-x86_64-i386-64bit sys - ('Python', '2.7.17 (default, Oct 24 2019, 12:57:47) \n[GCC 4.2.1 Compatible Apple LLVM 11.0.0 (clang-1100.0.33.8)]') Skoot -( not able to install ) numpy -("NumPy", numpy.version) scipy - ('SciPy', '1.2.3') sklearn - scikit-learn->sklearn (1.16.6)

    opened by lakshmikrish-97 8
  • [MRG] Mac builds

    [MRG] Mac builds

    This PR adds builds for mac. Currently, it does not deploy to PyPI. We still need the deploy-vars group on ADO. Since we decided to just do mac + Linux for now, this branched off of add-azure... We can use that branch to play around with Windows, or create a new one

    opened by aaronreidsmith 1
  • Package Roadmap

    Package Roadmap

    Is skoot still an active project? Or is there a successor to this concept? Looking to build something similar for my specific workflow, but maybe it would be mutually beneficial to contribute to this project.

    opened by MattConflitti 2
  • String fields with typos

    String fields with typos

    Description

    TODO: Create a transformer that can map values in text fields to known "good" values given Levenstein distance or some other method.

    enhancement 
    opened by tgsmith61591 0
Releases(0.20.0)
Owner
Taylor G Smith
Data scientist, ML engineer and all-around hacker. Java was once my first love, but I've long since converted to the cult of Python.
Taylor G Smith
Tutorials, examples, collections, and everything else that falls into the categories: pattern classification, machine learning, and data mining

**Tutorials, examples, collections, and everything else that falls into the categories: pattern classification, machine learning, and data mining.** S

Sebastian Raschka 4k Dec 30, 2022
Python module for machine learning time series:

seglearn Seglearn is a python package for machine learning time series or sequences. It provides an integrated pipeline for segmentation, feature extr

David Burns 536 Dec 29, 2022
Multiple Linear Regression using the LinearRegression class from sklearn.linear_model library

Multiple-Linear-Regression-master - A python program to implement Multiple Linear Regression using the LinearRegression class from sklearn.linear model library

Kushal Shingote 1 Feb 06, 2022
Factorization machines in python

Factorization Machines in Python This is a python implementation of Factorization Machines [1]. This uses stochastic gradient descent with adaptive re

Corey Lynch 892 Jan 03, 2023
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Dec 22, 2022
Distributed Deep learning with Keras & Spark

Elephas: Distributed Deep Learning with Keras & Spark Elephas is an extension of Keras, which allows you to run distributed deep learning models at sc

Max Pumperla 1.6k Dec 29, 2022
ml4ir: Machine Learning for Information Retrieval

ml4ir: Machine Learning for Information Retrieval | changelog Quickstart → ml4ir Read the Docs | ml4ir pypi | python ReadMe ml4ir is an open source li

Salesforce 77 Jan 06, 2023
Automatically create Faiss knn indices with the most optimal similarity search parameters.

It selects the best indexing parameters to achieve the highest recalls given memory and query speed constraints.

Criteo 419 Jan 01, 2023
The MLOps is the process of continuous integration and continuous delivery of Machine Learning artifacts as a software product, keeping it inside a loop of Design, Model Development and Operations.

MLOps The MLOps is the process of continuous integration and continuous delivery of Machine Learning artifacts as a software product, keeping it insid

Maykon Schots 25 Nov 27, 2022
A handy tool for common machine learning models' hyper-parameter tuning.

Common machine learning models' hyperparameter tuning This repo is for a collection of hyper-parameter tuning for "common" machine learning models, in

Kevin Hu 2 Jan 27, 2022
A simple application that calculates the probability distribution of a normal distribution

probability-density-function General info An application that calculates the probability density and cumulative distribution of a normal distribution

1 Oct 25, 2022
MLR - Machine Learning Research

Machine Learning Research 1. Project Topic 1.1. Exsiting research Benmark: https://paperswithcode.com/sota ACL anthology for NLP papers: http://www.ac

Charles 69 Oct 20, 2022
BudouX is the successor to Budou, the machine learning powered line break organizer tool.

BudouX Standalone. Small. Language-neutral. BudouX is the successor to Budou, the machine learning powered line break organizer tool. It is standalone

Google 868 Jan 05, 2023
slim-python is a package to learn customized scoring systems for decision-making problems.

slim-python is a package to learn customized scoring systems for decision-making problems. These are simple decision aids that let users make yes-no p

Berk Ustun 37 Nov 02, 2022
Esse é o meu primeiro repo tratando de fim a fim, uma pipeline de dados abertos do governo brasileiro relacionado a compras de contrato e cronogramas anuais com spark, em pyspark e SQL!

Olá! Esse é o meu primeiro repo tratando de fim a fim, uma pipeline de dados abertos do governo brasileiro relacionado a compras de contrato e cronogr

Henrique de Paula 10 Apr 04, 2022
A collection of Machine Learning Models To Web Api which are built on open source technologies/frameworks like Django, Flask.

Author Ibrahim Koné From-Machine-Learning-Models-To-WebAPI A collection of Machine Learning Models To Web Api which are built on open source technolog

Ibrahim Koné 2 May 24, 2022
machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service

This is a machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service. We initially made th

Krishna Priyatham Potluri 73 Dec 01, 2022
Production Grade Machine Learning Service

This project is made to help you scale from a basic Machine Learning project for research purposes to a production grade Machine Learning web service

Abdullah Zaiter 10 Apr 04, 2022
Tool for producing high quality forecasts for time series data that has multiple seasonality with linear or non-linear growth.

Prophet: Automatic Forecasting Procedure Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends ar

Facebook 15.4k Jan 07, 2023
A Microsoft Azure Web App project named Covid 19 Predictor using Machine learning Model

A Microsoft Azure Web App project named Covid 19 Predictor using Machine learning Model (Random Forest Classifier Model ) that helps the user to identify whether someone is showing positive Covid sym

Priyansh Sharma 2 Oct 06, 2022