An unsupervised learning framework for depth and ego-motion estimation from monocular videos

Overview

SfMLearner

This codebase implements the system described in the paper:

Unsupervised Learning of Depth and Ego-Motion from Video

Tinghui Zhou, Matthew Brown, Noah Snavely, David G. Lowe

In CVPR 2017 (Oral).

See the project webpage for more details. Please contact Tinghui Zhou ([email protected]) if you have any questions.

Prerequisites

This codebase was developed and tested with Tensorflow 1.0, CUDA 8.0 and Ubuntu 16.04.

Running the single-view depth demo

We provide the demo code for running our single-view depth prediction model. First, download the pre-trained model from this Google Drive, and put the model files under models/. Then you can use the provided ipython-notebook demo.ipynb to run the demo.

Preparing training data

In order to train the model using the provided code, the data needs to be formatted in a certain manner.

For KITTI, first download the dataset using this script provided on the official website, and then run the following command

python data/prepare_train_data.py --dataset_dir=/path/to/raw/kitti/dataset/ --dataset_name='kitti_raw_eigen' --dump_root=/path/to/resulting/formatted/data/ --seq_length=3 --img_width=416 --img_height=128 --num_threads=4

For the pose experiments, we used the KITTI odometry split, which can be downloaded here. Then you can change --dataset_name option to kitti_odom when preparing the data.

For Cityscapes, download the following packages: 1) leftImg8bit_sequence_trainvaltest.zip, 2) camera_trainvaltest.zip. Then run the following command

python data/prepare_train_data.py --dataset_dir=/path/to/cityscapes/dataset/ --dataset_name='cityscapes' --dump_root=/path/to/resulting/formatted/data/ --seq_length=3 --img_width=416 --img_height=171 --num_threads=4

Notice that for Cityscapes the img_height is set to 171 because we crop out the bottom part of the image that contains the car logo, and the resulting image will have height 128.

Training

Once the data are formatted following the above instructions, you should be able to train the model by running the following command

python train.py --dataset_dir=/path/to/the/formatted/data/ --checkpoint_dir=/where/to/store/checkpoints/ --img_width=416 --img_height=128 --batch_size=4

You can then start a tensorboard session by

tensorboard --logdir=/path/to/tensorflow/log/files --port=8888

and visualize the training progress by opening https://localhost:8888 on your browser. If everything is set up properly, you should start seeing reasonable depth prediction after ~100K iterations when training on KITTI.

Notes

After adding data augmentation and removing batch normalization (along with some other minor tweaks), we have been able to train depth models better than what was originally reported in the paper even without using additional Cityscapes data or the explainability regularization. The provided pre-trained model was trained on KITTI only with smooth weight set to 0.5, and achieved the following performance on the Eigen test split (Table 1 of the paper):

Abs Rel Sq Rel RMSE RMSE(log) Acc.1 Acc.2 Acc.3
0.183 1.595 6.709 0.270 0.734 0.902 0.959

When trained on 5-frame snippets, the pose model obtains the following performanace on the KITTI odometry split (Table 3 of the paper):

Seq. 09 Seq. 10
0.016 (std. 0.009) 0.013 (std. 0.009)

Evaluation on KITTI

Depth

We provide evaluation code for the single-view depth experiment on KITTI. First, download our predictions (~140MB) from this Google Drive and put them into kitti_eval/.

Then run

python kitti_eval/eval_depth.py --kitti_dir=/path/to/raw/kitti/dataset/ --pred_file=kitti_eval/kitti_eigen_depth_predictions.npy

If everything runs properly, you should get the numbers for Ours(CS+K) in Table 1 of the paper. To get the numbers for Ours cap 50m (CS+K), set an additional flag --max_depth=50 when executing the above command.

Pose

We provide evaluation code for the pose estimation experiment on KITTI. First, download the predictions and ground-truth pose data from this Google Drive.

Notice that all the predictions and ground-truth are 5-frame snippets with the format of timestamp tx ty tz qx qy qz qw consistent with the TUM evaluation toolkit. Then you could run

python kitti_eval/eval_pose.py --gtruth_dir=/directory/of/groundtruth/trajectory/files/ --pred_dir=/directory/of/predicted/trajectory/files/

to obtain the results reported in Table 3 of the paper. For instance, to get the results of Ours for Seq. 10 you could run

python kitti_eval/eval_pose.py --gtruth_dir=kitti_eval/pose_data/ground_truth/10/ --pred_dir=kitti_eval/pose_data/ours_results/10/

KITTI Testing code

Depth

Once you have model trained, you can obtain the single-view depth predictions on the KITTI eigen test split formatted properly for evaluation by running

python test_kitti_depth.py --dataset_dir /path/to/raw/kitti/dataset/ --output_dir /path/to/output/directory --ckpt_file /path/to/pre-trained/model/file/

Pose

We also provide sample testing code for obtaining pose predictions on the KITTI dataset with a pre-trained model. You can obtain the predictions formatted as above for pose evaluation by running

python test_kitti_pose.py --test_seq [sequence_id] --dataset_dir /path/to/KITTI/odometry/set/ --output_dir /path/to/output/directory/ --ckpt_file /path/to/pre-trained/model/file/

A sample model trained on 5-frame snippets can be downloaded at this Google Drive.

Then you can obtain predictions on, say Seq. 9, by running

python test_kitti_pose.py --test_seq 9 --dataset_dir /path/to/KITTI/odometry/set/ --output_dir /path/to/output/directory/ --ckpt_file models/model-100280

Other implementations

Pytorch (by Clement Pinard)

Disclaimer

This is the authors' implementation of the system described in the paper and not an official Google product.

Owner
Tinghui Zhou
Tinghui Zhou
Distributed Deep learning with Keras & Spark

Elephas: Distributed Deep Learning with Keras & Spark Elephas is an extension of Keras, which allows you to run distributed deep learning models at sc

Max Pumperla 1.6k Jan 05, 2023
Learning with Subset Stacking

Learning with Subset Stacking (LESS) LESS is a new supervised learning algorithm that is based on training many local estimators on subsets of a given

S. Ilker Birbil 19 Oct 04, 2022
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023
PyTorch implementation of "PatchGame: Learning to Signal Mid-level Patches in Referential Games" to appear in NeurIPS 2021

PatchGame: Learning to Signal Mid-level Patches in Referential Games This repository is the official implementation of the paper - "PatchGame: Learnin

Kamal Gupta 22 Mar 16, 2022
Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

235 Dec 26, 2022
[PyTorch] Official implementation of CVPR2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency". https://arxiv.org/abs/2103.05465

PointDSC repository PyTorch implementation of PointDSC for CVPR'2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency",

153 Dec 14, 2022
๐Ÿฅ‡ LG-AI-Challenge 2022 1์œ„ ์†”๋ฃจ์…˜ ์ž…๋‹ˆ๋‹ค.

LG-AI-Challenge-for-Plant-Classification Dacon์—์„œ ์ง„ํ–‰๋œ ๋†์—… ํ™˜๊ฒฝ ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ์ž‘๋ฌผ ๋ณ‘ํ•ด ์ง„๋‹จ AI ๊ฒฝ์ง„๋Œ€ํšŒ ์— ๋Œ€ํ•œ ์ฝ”๋“œ์ž…๋‹ˆ๋‹ค. (colab directory์— ์ฝ”๋“œ๊ฐ€ ์ž˜ ์ •๋ฆฌ ๋˜์–ด์žˆ์Šต๋‹ˆ๋‹ค.) Requirements python

siwooyong 10 Jun 30, 2022
YOLO-v5 ๊ธฐ๋ฐ˜ ๋‹จ์•ˆ ์นด๋ฉ”๋ผ์˜ ์˜์ƒ์„ ํ™œ์šฉํ•ด ์ฐจ๊ฐ„ ๊ฑฐ๋ฆฌ๋ฅผ ์ผ์ •ํ•˜๊ฒŒ ์œ ์ง€ํ•˜๋ฉฐ ์ฃผํ–‰ํ•˜๋Š” Adaptive Cruise Control ๊ธฐ๋Šฅ ๊ตฌํ˜„

์ž์œจ ์ฃผํ–‰์ฐจ์˜ ์˜์ƒ ๊ธฐ๋ฐ˜ ์ฐจ๊ฐ„๊ฑฐ๋ฆฌ ์œ ์ง€ ๊ฐœ๋ฐœ Table of Contents ํ”„๋กœ์ ํŠธ ์†Œ๊ฐœ ์ฃผ์š” ๊ธฐ๋Šฅ ์‹œ์Šคํ…œ ๊ตฌ์กฐ ๋””๋ ‰ํ† ๋ฆฌ ๊ตฌ์กฐ ๊ฒฐ๊ณผ ์‹คํ–‰ ๋ฐฉ๋ฒ• ์ฐธ์กฐ ํŒ€์› ํ”„๋กœ์ ํŠธ ์†Œ๊ฐœ YOLO-v5 ๊ธฐ๋ฐ˜์œผ๋กœ ๋‹จ์•ˆ ์นด๋ฉ”๋ผ์˜ ์˜์ƒ์„ ํ™œ์šฉํ•ด ์ฐจ๊ฐ„ ๊ฑฐ๋ฆฌ๋ฅผ ์ผ์ •ํ•˜๊ฒŒ ์œ ์ง€ํ•˜๋ฉฐ ์ฃผํ–‰ํ•˜๋Š” Adap

14 Jun 29, 2022
Code for Max-Margin Contrastive Learning - AAAI 2022

Max-Margin Contrastive Learning This is a pytorch implementation for the paper Max-Margin Contrastive Learning accepted to AAAI 2022. This repository

Anshul Shah 12 Oct 22, 2022
Download from Onlyfans.com.

OnlySave: Onlyfans downloader Getting Started: Download the setup executable from the latest release. Install and run. Only works on Windows currently

4 May 30, 2022
EfficientNetV2 implementation using PyTorch

EfficientNetV2-S implementation using PyTorch Train Steps Configure imagenet path by changing data_dir in train.py python main.py --benchmark for mode

Jahongir Yunusov 86 Dec 29, 2022
A selection of State Of The Art research papers (and code) on human locomotion (pose + trajectory) prediction (forecasting)

A selection of State Of The Art research papers (and code) on human trajectory prediction (forecasting). Papers marked with [W] are workshop papers.

Karttikeya Manglam 40 Nov 18, 2022
This repository contains the source codes for the paper AtlasNet V2 - Learning Elementary Structures.

AtlasNet V2 - Learning Elementary Structures This work was build upon Thibault Groueix's AtlasNet and 3D-CODED projects. (you might want to have a loo

Thรฉo Deprelle 123 Nov 11, 2022
StrongSORT: Make DeepSORT Great Again

StrongSORT StrongSORT: Make DeepSORT Great Again StrongSORT: Make DeepSORT Great Again Yunhao Du, Yang Song, Bo Yang, Yanyun Zhao arxiv 2202.13514 Abs

369 Jan 04, 2023
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"

Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted

Namkyeong Lee 59 Dec 01, 2022
A production-ready, scalable Indexer for the Jina neural search framework, based on HNSW and PSQL

๐ŸŒŸ HNSW + PostgreSQL Indexer HNSWPostgreSQLIndexer Jina is a production-ready, scalable Indexer for the Jina neural search framework. It combines the

Jina AI 25 Oct 14, 2022
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Xavier Bresson 287 Jan 04, 2023
.NET bindings for the Pytorch engine

TorchSharp TorchSharp is a .NET library that provides access to the library that powers PyTorch. It is a work in progress, but already provides a .NET

Matteo Interlandi 17 Aug 30, 2021
Freecodecamp Scientific Computing with Python Certification; Solution for Challenge 2: Time Calculator

Assignment Write a function named add_time that takes in two required parameters and one optional parameter: a start time in the 12-hour clock format

Hellen Namulinda 0 Feb 26, 2022
Ranger - a synergistic optimizer using RAdam (Rectified Adam), Gradient Centralization and LookAhead in one codebase

Ranger-Deep-Learning-Optimizer Ranger - a synergistic optimizer combining RAdam (Rectified Adam) and LookAhead, and now GC (gradient centralization) i

Less Wright 1.1k Dec 21, 2022