TinyML Cookbook, published by Packt

Overview

TinyML Cookbook

TinyML Cookbook

This is the code repository for TinyML Cookbook, published by Packt.

Author: Gian Marco Iodice
Publisher: Packt

About the book

This book is about TinyML, a fast-growing field at the unique intersection of machine learning and embedded systems to make AI ubiquitous with extremely low-powered devices such as microcontrollers.

TinyML is an exciting field full of opportunities. With a small budget, we can give life to objects that interact with the world around us smartly and transform the way we live for the better. However, this field can be hard to approach if we come from an ML background with a little familiarity with embedded systems such as microcontrollers. Therefore, this book wants to dispel these barriers and make TinyML also accessible to developers with no embedded programming experience through practical examples. Each chapter will be a self-contained project to learn how to use some of the technologies at the heart of TinyML, interface with electronic components like sensors, and deploy ML models on memory-constrained devices.

Who is this book for

This book is for ML developers/engineers interested in developing machine learning applications on microcontrollers through practical examples quickly. The book will help you expand your knowledge towards the revolution of tiny machine learning (TinyML) by building end-to-end smart projects with real-world data sensors on Arduino Nano 33 BLE Sense and Raspberry Pi Pico.

Basic familiarity with C/C++, Python programming, and a command-line interface (CLI) is required. However, no prior knowledge of microcontrollers is necessary.

Technical requirements

You will need a computer (either a laptop or desktop) with an x86-64 architecture and at least one USB port for programming Arduino Nano 33 BLE Sense and Raspberry Pi Pico microcontroller boards. For the first six chapters, you can use Ubuntu 18.04 (or later) or Windows (for example, Windows 10) as an operating system (OS). However, you will need Ubuntu 18.04 (or later) for chapter 7 and chapter 8.

The only software prerequisites for your computer are:

  • Python (Python 3.7 recommended)
  • Text editor (for example, gedit on Ubuntu)
  • Media player (for example, VLC)
  • Image viewer (for example, the default app in Ubuntu or Windows 10)
  • Web browser (for example, Google Chrome)

Arduino Nano 33 BLE Sense and Raspberry Pi Pico programs will be developed directly in the web browser with the Arduino Web Editor. However, you may also consider using the local Arduino IDE following the instructions provided at this link.

The following table summarizes the hardware devices and software tools covered in each chapter:

Chapter Devices SW tools Electronic components
1 - Arduino Nano 33 BLE Sense
- Raspberry Pi Pico
- Arduino Web Editor None
2 - Arduino Nano 33 BLE Sense
- Raspberry Pi Pico
- Arduino Web Editor - A micro-USB cable
- 1x half-size breadboard
- 1x red LED
- 1x 220 Ohm resistor
- 1x 3 AA battery holder
- 1x 4 AA battery holder
- 4x AA batteries
- 5x jumper wires
3 - Arduino Nano 33 BLE Sense
- Raspberry Pi Pico
- Arduino Web Editor
- Google Colaboratory
- A micro-USB cable
- 1x half-size breadboard
- 1x AM2302 module with the DHT22 sensor
- 5x jumper wires
4 - Arduino Nano 33 BLE Sense
- Raspberry Pi Pico
- Arduino Web Editor
- Edge Impulse
- Python
- A micro-USB cable
- 1x half-size breadboard
- 1x electrect microphone amplifier - MAX9814
- 2x 220 Ohm resistor
- 1x 100 Ohm resistor
- 1x red LED
- 1x green LED
- 1x blue LED
- 1x push-button
- 11x jumper wires
5 - Arduino Nano 33 BLE Sense - Arduino Web Editor
- Google Colaboratory
- Python
- A micro-USB cable
- 1x half-size breadboard
- 1x OV7670 camera module
- 1x push-button
- 18 jumper wires
6 - Raspberry Pi Pico - Arduino Web Editor
- Edge Impulse
- Python
- A micro-USB cable
- 1x half-size breadboard
- 1x MPU-6050 IMU
- 4x jumper wires
7 - Arm Cortex-M3 Virtual Platform (QEMU) - Google Colaboratory
- Python
- Zephyr project
None
8 - Virtual Arm Ethos-U55 microNPU - Arm Corstone-300 FVP
- Python
- TVM
None

Citation

To cite TinyML Cookbook in publications use:

@book{iodice2022tinymlcookbook,
  title={TinyML Cookbook: Combine artificial intelligence and ultra-low-power embedded devices to make the world smarter},
  author={Gian Marco Iodice},
  year={2022},
  publisher={Packt},
  isbn = {9781801814973},
  url = {https://www.packtpub.com/product/tinyml-cookbook/9781801814973}
}

About the author

Gian Marco Iodice is team and tech lead in the Machine Learning Group at Arm, who co-created the Arm Compute Library in 2017. Arm Compute Library is currently the most performant library for ML on Arm, and it’s deployed on billions of devices worldwide – from servers to smartphones.

Gian Marco holds an MSc degree, with honors, in electronic engineering from the University of Pisa (Italy) and has several years of experience developing ML and computer vision algorithms on edge devices. Now, he's leading the ML performance optimization on Arm Mali GPUs.

In 2020, Gian Marco co-founded the TinyML UK meetup group to encourage knowledge sharing, educate, and inspire the next generation of ML developers on tiny and power-efficient devices.

Owner
Packt
Providing books, eBooks, video tutorials, and articles for IT developers, administrators, and users.
Packt
Drone Task1 - Drone Task1 With Python

Drone_Task1 Matching Results 3.mp4 1.mp4

MLV Lab (Machine Learning and Vision Lab at Korea University) 11 Nov 14, 2022
Tom-the-AI - A compound artificial intelligence software for Linux systems.

Tom the AI (version 0.82) WARNING: This software is not yet ready to use, I'm still setting up the GitHub repository. Should be ready in a few days. T

2 Apr 28, 2022
PyTorch reimplementation of hand-biomechanical-constraints (ECCV2020)

Hand Biomechanical Constraints Pytorch Unofficial PyTorch reimplementation of Hand-Biomechanical-Constraints (ECCV2020). This project reimplement foll

Hao Meng 59 Dec 20, 2022
Related resources for our EMNLP 2021 paper

Plan-then-Generate: Controlled Data-to-Text Generation via Planning Authors: Yixuan Su, David Vandyke, Sihui Wang, Yimai Fang, and Nigel Collier Code

Yixuan Su 61 Jan 03, 2023
Improving Machine Translation Systems via Isotopic Replacement

CAT (Improving Machine Translation Systems via Isotopic Replacement) Machine translation plays an essential role in people’s daily international commu

Zeyu Sun 10 Nov 30, 2022
Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Parallel Tacotron2 Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Keon Lee 170 Dec 27, 2022
Source code for the paper: Variance-Aware Machine Translation Test Sets (NeurIPS 2021 Datasets and Benchmarks Track)

Variance-Aware-MT-Test-Sets Variance-Aware Machine Translation Test Sets License See LICENSE. We follow the data licensing plan as the same as the WMT

NLP2CT Lab, University of Macau 5 Dec 21, 2021
A general framework for inferring CNNs efficiently. Reduce the inference latency of MobileNet-V3 by 1.3x on an iPhone XS Max without sacrificing accuracy.

GFNet-Pytorch (NeurIPS 2020) This repo contains the official code and pre-trained models for the glance and focus network (GFNet). Glance and Focus: a

Rainforest Wang 169 Oct 28, 2022
Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields.

This repository contains the code release for Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. This implementation is written in JAX, and is a fork of Google's JaxNeRF

Google 625 Dec 30, 2022
[3DV 2021] Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation

Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation This is the official implementation for the method described in Ch

Jiaxing Yan 27 Dec 30, 2022
A simple version for graphfpn

GraphFPN: Graph Feature Pyramid Network for Object Detection Download graph-FPN-main.zip For training , run: python train.py For test with Graph_fpn

WorldGame 67 Dec 25, 2022
D²Conv3D: Dynamic Dilated Convolutions for Object Segmentation in Videos

D²Conv3D: Dynamic Dilated Convolutions for Object Segmentation in Videos This repository contains the implementation for "D²Conv3D: Dynamic Dilated Co

17 Oct 20, 2022
CLIP: Connecting Text and Image (Learning Transferable Visual Models From Natural Language Supervision)

CLIP (Contrastive Language–Image Pre-training) Experiments (Evaluation) Model Dataset Acc (%) ViT-B/32 (Paper) CIFAR100 65.1 ViT-B/32 (Our) CIFAR100 6

Myeongjun Kim 52 Jan 07, 2023
Reproduce partial features of DeePMD-kit using PyTorch.

DeePMD-kit on PyTorch For better understand DeePMD-kit, we implement its partial features using PyTorch and expose interface consuing descriptors. Tec

Shaochen Shi 8 Dec 17, 2022
Source code for Zalo AI 2021 submission

zalo_ltr_2021 Source code for Zalo AI 2021 submission Solution: Pipeline We use the pipepline in the picture below: Our pipeline is combination of BM2

128 Dec 27, 2022
Pytorch reimplementation of PSM-Net: "Pyramid Stereo Matching Network"

This is a Pytorch Lightning version PSMNet which is based on JiaRenChang/PSMNet. use python main.py to start training. PSM-Net Pytorch reimplementatio

XIAOTIAN LIU 1 Nov 25, 2021
Deep generative modeling for time-stamped heterogeneous data, enabling high-fidelity models for a large variety of spatio-temporal domains.

Neural Spatio-Temporal Point Processes [arxiv] Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel Abstract. We propose a new class of parameterizations

Facebook Research 75 Dec 19, 2022
FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective

FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective Official implementation of "FL-WBC: Enhan

Jingwei Sun 26 Nov 28, 2022
SBINN: Systems-biology informed neural network

SBINN: Systems-biology informed neural network The source code for the paper M. Daneker, Z. Zhang, G. E. Karniadakis, & L. Lu. Systems biology: Identi

Lu Group 15 Nov 19, 2022
Code accompanying the paper "Wasserstein GAN"

Wasserstein GAN Code accompanying the paper "Wasserstein GAN" A few notes The first time running on the LSUN dataset it can take a long time (up to an

3.1k Jan 01, 2023